16 research outputs found

    Minnelide effectively eliminates CD133+ side population in pancreatic cancer

    Get PDF
    BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease hallmarked by limited patient survival. Resistance to chemotherapy, a major cause of treatment failure in PDAC patients, is often attributed to Cancer Stem Cells (CSCs). Pancreatic CSCs are a small subset of quiescent cells within a tumor represented by surface markers like CD133. These cells are responsible not only for tumor recurrence, but also poor prognosis based on their “stem-like” characteristics. At present, conventional therapy is directed towards rapidly dividing PDAC cells and thus fails to target the CSC population. METHODS: MIA PaCa-2, S2-013 and AsPC-1 were treated with 12.5 nM triptolide (12 T cells) for 7 days. The surviving cells were recovered briefly in drug-free growth media and then transferred to Cancer Stem cell Media (CSM). As a control, untreated cells were also transferred to CSM media (CSM). The 12 T and CSM cells were tested for stemness properties using RNA and protein markers. Low numbers of CSM and 12 T cells were implanted subcutaneously in athymic nude mice to study their tumorigenic potential. 12 T and CSM cells were sorted for CD133 expression and assayed for their colony forming ability and sphere forming ability. Invasiveness of 12 T cells, CSM and MIA PaCa-2 were compared using Boyden chamber assays. RESULTS: Treated 12 T cells displayed increased expression of the surface marker CD133 and the drug transporter ABCG2 compared to untreated cells (CSM cells). Both 12 T and CSM cells formed subcutaneous tumors in mice confirming their tumor-initiating properties. When tested for invasion, 12 T cells had increased invasiveness compared to CSM cells. CD133(+) cells in both CSM and 12 T showed greater colony and sphere forming ability compared to CD133(−) cells from each group. Consistent with these data, when injected subcutaneously in mice, CD133(−) cells from CSM or 12 T did not form any tumors whereas CD133(+) cells from both groups showed tumor formation at a very low cell number. Despite pre-exposure to triptolide in 12 T CD133(+) cells, treatment of tumors formed by these cells with Minnelide, a triptolide pro-drug, showed significant tumor regression. CONCLUSION: Our results indicated that triptolide enhanced and enriched the “stemness” in the PDAC cell lines at a low dose of 12.5 nM, but also resulted in the regression of tumors derived from these cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12943-015-0470-6) contains supplementary material, which is available to authorized users

    Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties

    Get PDF
    BACKGROUND: Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further. METHODS: A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed. RESULTS: Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities. CONCLUSIONS: Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research

    Letter to the Editor: Deformity surgery

    No full text

    Letter to the Editor: Percutaneous vertebroplasty

    No full text

    Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have demonstrated that the consumption of green tea inhibits the growth of various cancers. Most cancers are believed to be initiated from and maintained by a small population of cancer stem-like cells (CSC) or tumor-initiating cells (TIC) that are responsible for tumor relapse and chemotherapeutic resistance. Although epigallocathechin gallate (EGCG), the most abundant catechin in green tea, has been reported to induce growth inhibition and apoptosis in some cancer cells, its effect on CSC is undefined. In this study, we enriched CSC by the sphere formation, and provided an efficient model for further experiments. Using this method, we examined the effects of EGCG regulating the nasopharyngeal carcinoma (NPC) CSC and attempted to elucidate the possible mechanisms.</p> <p>Methods</p> <p>NPC TW01 and TW06 cell lines were enriched by sphere formation and characterized their phenotypical properties, such as invasion capacity, epithelial-mesenchymal transition (EMT) and gene expression were analyzed by quantitative real-time reverse transcription polymerase chain reaction (q-RT-PCR). EGCG-induced growth inhibition in the parental and sphere-derived cells was determined by MTT and bromodeoxyuridine (BrdU) assay. EGCG-induced apoptosis was analyzed by flow cytometry with Annexin V and PI staining. The effects of EGCG on sphere-derived cell tumorigenicity, migration and invasion were determined by soft agar assay, wound healing, and cell invasion assay. The alternation of protein expression regulated by EGCG on these sphere-derived cells was assessed by immunofluorescence staining and western blot.</p> <p>Results</p> <p>NPC sphere-derived cells grown in serum-free non-adherent culture showed increased expression of stem cell markers and EMT markers compared to parental cells grown in conventional culture. Although EGCG induced growth inhibition and apoptosis in the parental cells in a dose-dependent manner, it was not as effective against spheres. However, EGCG potently inhibited sphere formation and can eliminate the stem cell characteristics of NPC and inhibit the epithelial-mesenchymal transition (EMT) signatures.</p> <p>Conclusions</p> <p>Overall, these findings show that NPC cells with sphere formations possess the properties of CSC. Using this model, we found that EGCG regulated NPC CSC, their self-renewal capacity, and inhibited their invasive characteristics. It supports the pivotal role of EGCG as a dietary compound targeting NPC and may decrease recurrence and metastasis in nasopharyngeal carcinoma cells.</p
    corecore