37 research outputs found

    A Relationship Between Rainfall and Burned Area for Portugal

    No full text

    Some Thoughts on the Wind and Slope Effects on Fire Propagation

    No full text

    Experimental analysis of fire spread across a two-dimensional ridge under wind conditions

    No full text
    Results from a laboratory-scale investigation of a fire spreading on the windward face of a triangular-section hill of variable shape with wind perpendicular to the ridgeline are reported. They confirm previous observations that the fire enlarges its lateral spread after reaching the ridgeline, entering the leeward face with a much wider front. Reference fire spread velocities were measured and analysed, putting in evidence the importance of the dynamic effect due to flow velocity and its associated horizontal-axis separation vortex strength without dependence on hill geometry. Similar parameters estimated from three forest fires compared favourably with the laboratory-scale measurements

    The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change

    No full text
    In this study, we investigated the impact of future climate change on fire activity in 12 districts across Portugal. Using historical relationships and the HIRHAM (High Resolution Hamburg Model) 12 and 25 km climate simulations, we assessed the fire weather and subsequent fire activity under a 2 x CO(2) scenario. We found that the fire activity prediction was not affected by the spatial resolution of the climate model used (12 vs. 25 km). Future area burned is predicted to increase 478% for Portugal as a whole, which equates to an increase from 1.4% to 7.8% of the available burnable area burning annually. Fire occurrence will also see a dramatic increase (279%) for all of Portugal. There is significant spatial variation within these results; the north and central districts of the country generally will see larger increases in fire activity
    corecore