7,098 research outputs found
Biocidal silver and silver/titania composite films grown by chemical vapour deposition
This paper describes the growth and testing of highly active biocidal films based on photocatalytically active films of TiO2, grownby
thermal CVD, functionally and structurallymodified by deposition of nanostructured silver via a novel flame assisted combination
CVD process. The resulting composite films are shown to be highly durable, highly photocatalytically active and are also shown to
possess strong antibacterial behaviour. The deposition control, arising from the described approach, offers the potential to control
the film nanostructure, which is proposed to be crucial in determining the photo and bioactivity of the combined film structure,
and the transparency of the composite films. Furthermore, we show that the resultant films are active to a range of organisms,
including Gram-negative and Gram-positive bacteria, and viruses. The very high-biocidal activity is above that expected from the
concentrations of silver present, and this is discussed in terms of nanostructure of the titania/silver surface. These properties are
especially significant when combined with the well-known durability of CVD deposited thin films, offering new opportunities for
enhanced application in areas where biocidal surface functionality is sought
Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition
This paper describes how photocatalytically active films of TiO2, grown by thermal CVD, may be functionally and structurally modified by deposition of nano-structured silver via a novel flame assisted CVD process. The resulting composite films are shown to be highly durable, highly photocatalytically active and are also shown to possess strong antibacterial behaviour.
The deposition control, arising from the described approach, offers the potential to control the film nanostructure, which is proposed to be crucial in determining the photo and bio-activity of the combined film structure, and the transparency of the composite films.
Furthermore, we show that the resultant films also exhibit āself-regenerationā capability, in that they both kill bacteria present on the film surface and then photo-degrade the residues. Such a dual action significantly reducing the problems of surface deactivation due to build up of contamination.
These properties are especially significant when combined with the well-known durability of CVD deposited thin films, offering new opportunities for enhanced application in areas where bioactive surface functionality is sought
Photocatalytic antimicrobial activity of thin surface films of TiO2, CuO and TiO2 /CuO dual layers on Escherichia coli and bacteriophage T4
TiO2 coated surfaces are increasingly studied for their ability to inactivate microorganisms. The activity of glass coated with thin films of TiO2, CuO and hybrid CuO/TiO2 prepared by atmospheric Chemical Vapour Deposition (Ap-CVD) and TiO2 prepared by a sol-gel process was investigated using the inactivation of bacteriophage T4 as a model for
inactivation of viruses. The chemical oxidising activity was also determined by measuring stearic acid oxidation. The results showed that the rate of inactivation of bacteriophage T4 increased with increasing chemical oxidising activity with the maximum rate obtained on
highly active sol-gel preparations. However these were delicate and easily damaged unlike the Ap-CVD coatings. Inactivation rates were highest on CuO and CuO/TiO2 which had the lowest chemical oxidising activities. The inactivation of T4 was higher than that of Escherichia coli on low activity surfaces. The combination of photocatalysis and toxicity of copper acted synergistically to inactivate bacteriophage T4 and retained some selfcleaning activity. The presence of phosphate ions slowed inactivation but NaCl had no effect. The results show that TiO2/CuO coated surfaces are highly antiviral and may have applications in the food and healthcare industries
Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.open11349353sciescopu
Antonio Gramsciās impact on critical pedagogy
This paper provides an account of Antonio Gramsciās impact on the area of critical pedagogy. It indicates the Gramscian influence on the thinking of major exponents of the field. It foregrounds Gramsci's ideas and then indicates how they have been taken up by a selection of critical pedagogy exponents who were chosen on the strength of their identification and engagement with Gramsci's ideas, some of them even having written entire essays on Gramsci. The essay concludes with a discussion concerning an aspect of Gramsci's concerns, the question of powerful knowledge, which, in the present author's view, provides a formidable challenge to critical pedagogues.peer-reviewe
Higher resolution total velocity Vt and Va finite-volume formulations on cell-centred structured and unstructured grids
Novel cell-centred finite-volume formulations are presented for incompressible and immiscible two-phase flow with both gravity and capillary pressure effects on structured and unstructured grids. The Darcy-flux is approximated by a control-volume distributed multipoint flux approximation (CVD-MPFA) coupled with a higher resolution approximation for convective transport. The CVD-MPFA method is used for Darcy-flux approximation involving pressure, gravity, and capillary pressure flux operators. Two IMPES formulations for coupling the pressure equation with fluid transport are presented. The first is based on the classical total velocity Vt fractional flow (Buckley Leverett) formulation, and the second is based on a more recent Va formulation. The CVD-MPFA method is employed for both Vt and Va formulations. The advantages of both coupled formulations are contrasted. The methods are tested on a range of structured and unstructured quadrilateral and triangular grids. The tests show that the resulting methods are found to be comparable for a number of classical cases, including channel flow problems. However, when gravity is present, flow regimes are identified where the Va formulation becomes locally unstable, in contrast to the total velocity formulation. The test cases also show the advantages of the higher resolution method compared to standard first-order single-point upstream weighting
Post-StenoticĀ RecirculatingĀ FlowĀ MayĀ CauseĀ HemodynamicĀ PerforatorĀ Infarction
Background and Purpose The primary mechanism underlying paramedian pontine infarction (PPI) is atheroma obliterating the perforators. Here, we encountered a patient with PPI in the post-stenotic area of basilar artery (BA) without a plaque, shown, by high-resolution magnetic resonance imaging (HR-MRI). We performed an experiment using a 3D-printed BA model and a particle image velocimetry (PIV) to explore the hemodynamic property of the post-stenotic area and the mechanism of PPI. Methods 3D-model of a BA stenosis was reconstructed with silicone compound using a 3D printer based on the source image of HR-MRI. Working fluid seeded with fluorescence particles was used and the velocity of those particles was measured horizontally and vertically. Furthermore, microtubules were inserted into the posterior aspect of the model to measure the flow rates of perforators (pre- and post-stenotic areas). The flow rates were compared between the microtubules. Results A recirculating flow was observed from the post-stenotic area in both directions forming a spiral shape. The velocity of the flow in these regions of recirculation was about one-tenth that of the flow in other regions. The location of recirculating flow well corresponded with the area with low-signal intensity at the time-of-flight magnetic resonance angiography and the location of PPI. Finally, the flow rate through the microtubule inserted into the post-stenotic area was significantly decreased comparing to others (P<0.001). Conclusions Perforator infarction may be caused by a hemodynamic mechanism altered by stenosis that induces a recirculation flow. 3D-printed modeling and PIV are helpful understanding the hemodynamics of intracranial stenosis.114Ysciescopu
Patient-Centered Care: An Examination of ProviderāPatient Communication Over Time
Objective: To examine the quality of provider communication over time considering the increasing emphasis on patient-centered care (PCC). Patient-centered care has been shown to have a positive impact on health outcomes, care experiences, quality-of-life, as well as decreased costs. Given this emphasis, we expect that providerāpatient communication has improved over time. Data Source: We collected primary data by self-report surveys between summer 2017 and fall 2018. Study Design: We use a quantitative retrospective cohort study of a national sample of 353 patients who had an ostomy surgery. Data Extraction Method: We measure provider communication from open-ended self-reports from patients of the number of stated inadequacies in their care. Principal Findings: Results show that the time since patients had their surgery is related to higher quality provider communication. That is, patients who had their surgery further back in time reported higher quality provider communication compared with patients who had their surgery performed more recently. Conclusion: Results suggest that the quality of provider communication has not improved even with an emphasis on PCC.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The research was funded by a āGraduate College Foundation Fellowship from the Department of Sociology and the Graduate College at the University of Oklahomaā to Leslie Miller. The funding does not impact the study in any way. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
Naked mole-rats have distinctive cardiometabolic and genetic adaptations to their underground low-oxygen lifestyles.
The naked mole-rat Heterocephalus glaber is a eusocial mammal exhibiting extreme longevity (37-year lifespan), extraordinary resistance to hypoxia and absence of cardiovascular disease. To identify the mechanisms behind these exceptional traits, metabolomics and RNAseq of cardiac tissue from naked mole-rats was compared to other African mole-rat genera (Cape, Cape dune, Common, Natal, Mahali, Highveld and Damaraland mole-rats) and evolutionarily divergent mammals (Hottentot golden mole and C57/BL6 mouse). We identify metabolic and genetic adaptations unique to naked mole-rats including elevated glycogen, thus enabling glycolytic ATP generation during cardiac ischemia. Elevated normoxic expression of HIF-1Ī± is observed while downstream hypoxia responsive-genes are down-regulated, suggesting adaptation to low oxygen environments. Naked mole-rat hearts show reduced succinate levels during ischemia compared to C57/BL6 mouse and negligible tissue damage following ischemia-reperfusion injury. These evolutionary traits reflect adaptation to a unique hypoxic and eusocial lifestyle that collectively may contribute to their longevity and health span
Redefining the Septal L-Strut in Septal Surgery
In septal surgery, the surgeon preserves the L-strut, the portion anterior to a vertical line drawn from the rhinion to the anterior nasal spine (ANS) and at least a 1-cm width of the dorsal and caudal septal segment, to decrease the potential for loss of the tip and dorsal nasal support. However, nasal tip collapse and saddle deformities occur occasionally. We utilized a mechanical approach to determine the safe width size for the L-strut in contact with the maxillary crest. Five L-strut models were designed based on computed tomography data (80 patients) and previous studies (55 patients). All L-strut models connected the perpendicular plate of the ethmoid bone (PPE) and the maxillary crest and were assumed to be fixed to the PPE and maxillary crest. An approximated daily load was applied to the dorsal portion of the L-strut. Finite element analyses were performed to compare the stress, strain, and displacement distribution of all L-strut models. According to the differences in the contact area between the caudal L-strut and maxillary crest, there are significant differences in terms of the stress, strain, and displacement distribution in the L-strut. High stresses occurred at the inner corner of the L-strut when 60 - 100% of the strut was in contact with the maxillary crest. High stresses also occurred at the inferior portion of the caudal L-strut when 20 - 40% of the caudal strut was in contact with maxillary crest. We conclude that it is important to preserve the 1-cm width L-strut caudal segment, which corresponds to the portion posterior to a vertical line drawn from the rhinion to the ANS. In particular, we must maintain more than 40% of the contact area between the L-strut and the maxillary crest when the septal cartilage in the caudal portion of the L-strut is harvested.ope
- ā¦