43 research outputs found

    Quantifying soil hydrology to explain the development of vegetation at an ex-arable wetland restoration site

    Get PDF
    Wetland restoration frequently sets well-defined vegetation targets, but where restoration occurs on highly degraded land such targets are not practical and setting looser targets may be more appropriate. Where this more ‘open-ended’ approach to restoration is adopted, surveillance methods that can track developing wetland habitats need to be established. Water regime and soil structure are known to influence the distribution and composition of developing wetland vegetation, and may be quantified using Sum Exceedence Values (SEV), calculated using the position of the water table and knowledge of soil stress thresholds. Use of SEV to explain patterns in naturally colonizing vegetation on restored, ex-arable land was tested at Wicken Fen (UK). Analysis of values from ten locations showed that soil structure was highly heterogeneous. Five locations had shallow aeration stress thresholds and so had the potential to support diverse wetland assemblages. Deep aeration stress thresholds at other locations precluded the establishment of a diverse wetland flora, but identified areas where species-poor wetland assemblages may develop. SEV was found to be a useful tool for the surveillance of sites where restoration targets are not specified in detail at the outset and may help predict likely habitat outcomes at sites using an open-ended restoration approach

    Sex-Related Effects of an Immune Challenge on Growth and Begging Behavior of Barn Swallow Nestlings

    Get PDF
    Parent-offspring conflicts lead the offspring to evolve reliable signals of individual quality, including parasite burden, which may allow parents to adaptively modulate investment in the progeny. Sex-related variation in offspring reproductive value, however, may entail differential investment in sons and daughters. Here, we experimentally manipulated offspring condition in the barn swallow (Hirundo rustica) by subjecting nestlings to an immune challenge (injection with bacterial lipopolysaccharide, LPS) that simulates a bacterial infection, and assessed the effects on growth, feather quality, expression of morphological (gape coloration) and behavioral (posture) begging displays involved in parent-offspring communication, as well as on food allocation by parents. Compared to sham-injected controls, LPS-treated chicks suffered a depression of body mass and a reduction of palate color saturation. In addition, LPS treatment resulted in lower feather quality, with an increase in the occurrence of fault bars on wing feathers. The color of beak flanges, feather growth and the intensity of postural begging were affected by LPS treatment only in females, suggesting that chicks of either sex are differently susceptible to the immune challenge. However, irrespective of the effects of LPS, parents equally allocated food among control and challenged offspring both under normal food provisioning and after a short period of food deprivation of the chicks. These results indicate that bacterial infection and the associated immune response entail different costs to offspring of either sex, but a decrease in nestling conditions does not affect parental care allocation, possibly because the barn swallow adopts a brood-survival strategy. Finally, we showed that physiological stress induced by pathogens impairs plumage quality, a previously neglected major negative impact of bacterial infection which could severely affect fitness, particularly among long-distance migratory birds

    Egg Production in a Coastal Seabird, the Glaucous-Winged Gull (Larus glaucescens), Declines during the Last Century

    Get PDF
    Seabirds integrate information about oceanic ecosystems across time and space, and are considered sensitive indicators of marine conditions. To assess whether hypothesized long-term foodweb changes such as forage fish declines may be reflected in a consumer's life history traits over time, I used meta-regression to evaluate multi-decadal changes in aspects of egg production in the glaucous-winged gull (Larus glaucescens), a common coastal bird. Study data were derived from literature searches of published papers and unpublished historical accounts, museum egg collections, and modern field studies, with inclusion criteria based on data quality and geographic area of the original study. Combined historical and modern data showed that gull egg size declined at an average of 0.04 cc y−1 from 1902 (108 y), equivalent to a decline of 5% of mean egg volume, while clutch size decreased over 48 y from a mean of 2.82 eggs per clutch in 1962 to 2.25 in 2009. There was a negative relationship between lay date and mean clutch size in a given year, with smaller clutches occurring in years where egg laying commenced later. Lay date itself advanced over time, with commencement of laying presently (2008–2010) 7 d later than in previous studies (1959–1986). This study demonstrates that glaucous-winged gull investment in egg production has declined significantly over the past ∼50–100 y, with such changes potentially contributing to recent population declines. Though gulls are generalist feeders that should readily be able to buffer themselves against food web changes, they are likely nutritionally constrained during the early breeding period, when egg production requirements are ideally met by consumption of high-quality prey such as forage fish. This study's results suggest a possible decline in the availability of such prey, and the incremental long-term impoverishment of a coastal marine ecosystem bordering one of North America's rapidly growing urban areas

    Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    Get PDF
    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict

    SRT is as easy as 12AKDB3

    No full text

    Effects of structural and functional habitat gaps on breeding woodland birds: working harder for less

    Get PDF
    The effects of habitat gaps on breeding success and parental daily energy expenditure (DEE) were investigated in great tits (Parus major) and blue tits (Cyanistes caeruleus) in urban parkland (Cardiff, UK) compared with birds in deciduous woodland (eastern England, UK). Tree canopy height, the percentage of gap in the canopy and the percentage of oak (in the wood only) within a 30 m radius of nest boxes were obtained from airborne remote-sensed data. Breeding success was monitored and parental DEE (great tits: both habitats; blue tits: park only) was measured using doubly labelled water in birds feeding young. In the park, mean (± SD) tree height (7.5 ± 4.7 m) was less than in the wood (10.6 ± 4.5 m), but the incidence of gaps (32.7 ± 22.6%) was greater (9.2 ± 14.7%). Great tits and blue tits both reared fewer young in the park and chick body mass was also reduced in park-reared great tits. Park great tits had a higher DEE (86.3 ± 12.3 kJ day-1) than those in the wood (78.0 ± 11.7 kJ day-1) and, because of smaller brood sizes, worked about 64% harder for each chick reared. Tits in the park with more than about 35% gap around their boxes had higher DEEs than the average for the habitat. In the wood, great tits with less oak around their boxes worked harder than average. Thus structural gaps, and functional gaps generated by variation in the quality of foraging habitat, increased the costs of rearing young
    corecore