1,036 research outputs found

    Vision loss following snakebite in a patient with controlled aplastic anemia

    Full text link
    Viper venoms act mainly on blood and blood vessels. Reports of ophthalmic manifestations after snakebite include ptosis and ophthalmoplegia. In the current study, we describe a case that developed bilateral retinal and subretinal hemorrhage following snakebite. Bilateral retinal hemorrhage is a rare ocular complication of snake envenomation and has not been reported with fundus photographs in the literature so far

    Molecular and genetic characterization of OSH6 (Oryza sativa Homeobox 6) using dissociation (Ds) insertion mutant rice

    Get PDF
    Genetic studies of dissociation (Ds) insertion mutant rice plants indicated that ectopic expression of truncated OSH6 (Oryza sativa Homeobox 6) mRNA may be responsible for the mutant phenotype of knotted leaf formation at the peduncle. Additionally, ectopic expression of truncated OSH6 mRNA in the OSH6-Ds mutant plant led to alteration of other homeobox genes including OSH15 in leaf tissues. The OSH6-Ds mutant plant exhibited altered expression of more than 118 genes on a 22K rice microarray in comparison with wild type plants. Of these genes, 20 were up- or down-regulated in both OSH6-Ds and OSH6-overexpressing (OSH6-35S) plants. Especially, OsDof3 was not expressed in floral organs, but was present in the panicles of both OSH6-Ds and OSH6-35S plants. It is assumed that truncated OSH6 transcript might be actively involved in the gene expression during organ development. The genetic relationship between OSH6-Ds and OSH15 suggested that the formation of the extra leaf is independent of OSH6-Ds or OSH15 expression. These results suggest that truncated OSH6 mRNA influences lateral organ growth and development by regulating the expression of specific gene groups.Key words: Oryza sativa Homeobox 6 (OSH6) genes, Ds insertion lines, OSH15 mutant

    Evaluation of 3D printed PCL/PLGA/beta-TCP versus collagen membranes for guided bone regeneration in a beagle implant model

    Get PDF
    Here, we compared 3D-printed polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate (PCL/PLGA/beta-TCP) membranes with the widely used collagen membranes for guided bone regeneration (GBR) in beagle implant models. For mechanical property comparison in dry and wet conditions and cytocompatibility determination, we analyzed the rate and pattern of cell proliferation of seeded fibroblasts and preosteoblasts using the cell counting kit-8 assay and scanning electron microscopy. Osteogenic differentiation was verified using alizarin red S staining. At 8 weeks following implantation in vivo using beagle dogs, computed tomography and histological analyses were performed after sacrifice. Cell proliferation rates in vitro indicated that early cell attachment was higher in collagen than in PCL/PLGA/beta-TCP membranes; however, the difference subsided by day 7. Similar outcomes were found for osteogenic differentiation, with approximately 2.5 times greater staining in collagen than PCL/PLGA/beta-TCP, but without significant difference by day 14. In vivo, bone regeneration in the defect area, represented by new bone formation and bone-to-implant contact, paralleled those associated with collagen membranes. However, tensile testing revealed that whereas the PCL/PLGA/beta-TCP membrane mechanical properties were conserved in both wet and dry states, the tensile property of collagen was reduced by 99% under wet conditions. Our results demonstrate in vitro and in vivo that PCL/PLGA/beta-TCP membranes have similar levels of biocompatibility and bone regeneration as collagen membranes. In particular, considering that GBR is always applied to a wet environment (e.g. blood, saliva), we demonstrated that PCL/PLGA/beta-TCP membranes maintained their form more reliably than collagen membranes in a wet setting, confirming their appropriateness as a GBR membrane.11109Ysciescopu

    Vitamin D in the general population of young adults with autism in the Faroe Islands

    Get PDF
    Vitamin D deficiency has been proposed as a possible risk factor for developing autism spectrum disorder (ASD). 25-Hydroxyvitamin D3 (25(OH)D3) levels were examined in a cross-sectional population-based study in the Faroe Islands. The case group consisting of a total population cohort of 40 individuals with ASD (aged 15–24 years) had significantly lower 25(OH)D3 than their 62 typically-developing siblings and their 77 parents, and also significantly lower than 40 healthy age and gender matched comparisons. There was a trend for males having lower 25(OH)D3 than females. Effects of age, month/season of birth, IQ, various subcategories of ASD and Autism Diagnostic Observation Schedule score were also investigated, however, no association was found. The very low 25(OH)D3 in the ASD group suggests some underlying pathogenic mechanism

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation

    Get PDF
    The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity

    Different competing risks models applied to data from the Australian Orthopaedic Association National Joint Replacement Registry

    Get PDF
    Purpose: Here we describe some available statistical models and illustrate their use for analysis of arthroplasty registry data in the presence of the competing risk of death, when the influence of covariates on the revision rate may be different to the influence on the probability (that is, risk) of the occurrence of revision. Patients and methods: Records of 12,525 patients aged 75–84 years who had received hemiarthroplasty for fractured neck of femur were obtained from the Australian Orthopaedic Association National Joint Replacement Registry. The covariates whose effects we investigated were: age, sex, type of prosthesis, and type of fixation (cementless or cemented). Extensions of competing risk regression models were implemented, allowing the effects of some covariates to vary with time. Results: The revision rate was significantly higher for patients with unipolar than bipolar prostheses (HR = 1.38, 95% CI: 1.01–1.89) or with monoblock than bipolar prostheses (HR = 1.45, 95% CI: 1.08–1.94). It was significantly higher for the younger age group (75–79 years) than for the older one (80–84 years) (HR = 1.28, 95% CI: 1.05–1.56) and higher for males than for females (HR = 1.37, 95% CI: 1.09–1.71). The probability of revision, after correction for the competing risk of death, was only significantly higher for unipolar prostheses than for bipolar prostheses, and higher for the younger age group. The effect of fixation type varied with time; initially, there was a higher probability of revision for cementless prostheses than for cemented prostheses, which disappeared after approximately 1.5 years. Interpretation: When accounting for the competing risk of death, the covariates type of prosthesis and sex influenced the rate of revision differently to the probability of revision. We advocate the use of appropriate analysis tools in the presence of competing risks and when covariates have time-dependent effects.Marianne H Gillam, Amy Salter, Philip Ryan, and Stephen E Grave

    Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation

    Get PDF
    Stimulation of CD95/Fas/APO-1 results in the induction of both apoptotic and non-apoptotic signaling pathways. The processes regulating these two opposing pathways have not been thoroughly elucidated to date. In this study, using quantitative immunoblots, imaging, and mathematical modeling, we addressed the dynamics of the DED proteins of the death-inducing signaling complex (DISC), procaspase-8, and cellular FLICE inhibitory proteins (c-FLIPs) to the onset of CD95-mediated ERK1/2 and p38 mitogen-activated protein kinase (MAPK) activation. We found that CD95 DISC-induced caspase-8 activity is important for the initiation of ERK1/2 and p38 MAPK activation. The long c-FLIP isoform, c-FLIPL, and the short c-FLIP isoform, c-FLIPR, inhibited MAPK induction by blocking caspase-8 processing at the DISC. Furthermore, we built a mathematical model describing CD95 DISC-mediated MAPK activation and apoptosis. The model quantitatively defined the dynamics of DED proteins, procaspase-8, and c-FLIP, which lead to caspase-8 activation and induction of apoptotic and non-apoptotic signaling pathways. In conclusion, the combination of biochemical analysis with mathematical modeling provides evidence for an important role of caspase-8 in CD95-mediated activation of MAPKs, while c-FLIP exerts a regulatory function in this process
    corecore