1,451 research outputs found

    Proof of finite surface code threshold for matching

    Full text link
    The field of quantum computation currently lacks a formal proof of experimental feasibility. Qubits are fragile and sophisticated quantum error correction is required to achieve reliable quantum computation. The surface code is a promising quantum error correction code, requiring only a physically reasonable 2-D lattice of qubits with nearest neighbor interactions. However, existing proofs that reliable quantum computation is possible using this code assume the ability to measure four-body operators and, despite making this difficult to realize assumption, require that the error rate of these operator measurements is less than 10^-9, an unphysically low target. High error rates have been proved tolerable only when assuming tunable interactions of strength and error rate independent of distance, which is also unphysical. In this work, given a 2-D lattice of qubits with only nearest neighbor two-qubit gates, and single-qubit measurement, initialization, and unitary gates, all of which have error rate p, we prove that arbitrarily reliable quantum computation is possible provided p<7.4x10^-4, a target that many experiments have already achieved. This closes a long-standing open problem, formally proving the experimental feasibility of quantum computation under physically reasonable assumptions.Comment: 5 pages, 4 figures, published versio

    Limiting absorption principle and perfectly matched layer method for Dirichlet Laplacians in quasi-cylindrical domains

    Full text link
    We establish a limiting absorption principle for Dirichlet Laplacians in quasi-cylindrical domains. Outside a bounded set these domains can be transformed onto a semi-cylinder by suitable diffeomorphisms. Dirichlet Laplacians model quantum or acoustically-soft waveguides associated with quasi-cylindrical domains. We construct a uniquely solvable problem with perfectly matched layers of finite length. We prove that solutions of the latter problem approximate outgoing or incoming solutions with an error that exponentially tends to zero as the length of layers tends to infinity. Outgoing and incoming solutions are characterized by means of the limiting absorption principle.Comment: to appear in SIAM Journal on Mathematical Analysi

    Topologically non-trivial quantum layers

    Full text link
    Given a complete non-compact surface embedded in R^3, we consider the Dirichlet Laplacian in a layer of constant width about the surface. Using an intrinsic approach to the layer geometry, we generalise the spectral results of an original paper by Duclos et al. to the situation when the surface does not possess poles. This enables us to consider topologically more complicated layers and state new spectral results. In particular, we are interested in layers built over surfaces with handles or several cylindrically symmetric ends. We also discuss more general regions obtained by compact deformations of certain layers.Comment: 15 pages, 6 figure

    Weakly regular Floquet Hamiltonians with pure point spectrum

    Full text link
    We study the Floquet Hamiltonian: -i omega d/dt + H + V(t) as depending on the parameter omega. We assume that the spectrum of H is discrete, {h_m (m = 1..infinity)}, with h_m of multiplicity M_m. and that V is an Hermitian operator, 2pi-periodic in t. Let J > 0 and set Omega_0 = [8J/9,9J/8]. Suppose that for some sigma > 0: sum_{m,n such that h_m > h_n} mu_{mn}(h_m - h_n)^(-sigma) < infinity where mu_{mn} = sqrt(min{M_m,M_n)) M_m M_n. We show that in that case there exist a suitable norm to measure the regularity of V, denoted epsilon, and positive constants, epsilon_* & delta_*, such that: if epsilon |Omega_0| - delta_* epsilon and the Floquet Hamiltonian has a pure point spectrum for all omega in Omega_infinity.Comment: 35 pages, Latex with AmsAr

    Tissue fusion over non-adhering surfaces

    Full text link
    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic non-adherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions

    Adiabatically switched-on electrical bias in continuous systems, and the Landauer-Buttiker formula

    Get PDF
    Consider a three dimensional system which looks like a cross-connected pipe system, i.e. a small sample coupled to a finite number of leads. We investigate the current running through this system, in the linear response regime, when we adiabatically turn on an electrical bias between leads. The main technical tool is the use of a finite volume regularization, which allows us to define the current coming out of a lead as the time derivative of its charge. We finally prove that in virtually all physically interesting situations, the conductivity tensor is given by a Landauer-B{\"u}ttiker type formula.Comment: 20 pages, submitte

    Topological code Autotune

    Full text link
    Many quantum systems are being investigated in the hope of building a large-scale quantum computer. All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates. Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific system to achieve better error tolerance can be extremely laborious. We describe a tool Autotune capable of performing this optimization automatically, and give two highly distinct examples of its use and extreme outperformance of unoptimized TQEC. Autotune is designed to facilitate the precise study of real hardware running TQEC with every quantum gate having a realistic, physics-based error model.Comment: 13 pages, 17 figures, version accepted for publicatio
    corecore