4 research outputs found

    Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. III. Correlation between Reactivity Levels, Crossover Frequency and Repair Efficiency

    No full text
    We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system

    The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage.

    No full text
    The MRN complex consists of the two evolutionarily conserved components Mre11 and Rad50 and the third less-conserved component Nbs1/Xrs2. This complex mediates telomere maintenance in addition to a variety of functions in response to DNA double-strand breaks, including homologous recombination, nonhomologous end joining (NHEJ), and activation of DNA damage checkpoints. Mutations in the Mre11 gene cause the human ataxia-telangiectasia-like disorder (ATDL). Here, we show that null mutations in the Drosophila mre11 and rad50 genes cause both telomeric fusion and chromosome breakage. Moreover, we demonstrate that these mutations are in the same epistasis group required for telomere capping and mitotic chromosome integrity. Using an antibody against Rad50, we show that this protein is uniformly distributed along mitotic chromosomes, and that Rad50 is unstable in the absence of its binding partner Mre11. To define the roles of rad50 and mre11 in telomere protection, mutant chromosome preparations were immunostained for both HP1 and HOAP, two proteins that protect Drosophila telomeres from fusion. Cytological analysis revealed that mutations in rad50 and mre11 drastically reduce accumulation of HOAP and HP1 at telomeres. This suggests that the MRN complex protects Drosophila telomeres by facilitating recruitment of HOAP and HP1 at chromosome ends
    corecore