1,626 research outputs found

    A comparison of gantry-mounted x-ray-based real-time target tracking methods.

    Get PDF
    PURPOSE: Most modern radiotherapy machines are built with a 2D kV imaging system. Combining this imaging system with a 2D-3D inference method would allow for a ready-made option for real-time 3D tumor tracking. This work investigates and compares the accuracy of four existing 2D-3D inference methods using both motion traces inferred from external surrogates and measured internally from implanted beacons. METHOD: Tumor motion data from 160 fractions (46 thoracic/abdominal patients) of Synchrony traces (inferred traces), and 28 fractions (7 lung patients) of Calypso traces (internal traces) from the LIGHT SABR trial (NCT02514512) were used in this study. The motion traces were used as the ground truth. The ground truth trajectories were used in silico to generate 2D positions projected on the kV detector. These 2D traces were then passed to the 2D-3D inference methods: interdimensional correlation, Gaussian probability density function (PDF), arbitrary-shape PDF, and the Kalman filter. The inferred 3D positions were compared with the ground truth to determine tracking errors. The relationships between tracking error and motion magnitude, interdimensional correlation, and breathing periodicity index (BPI) were also investigated. RESULTS: Larger tracking errors were observed from the Calypso traces, with RMS and 95th percentile 3D errors of 0.84-1.25 mm and 1.72-2.64 mm, compared to 0.45-0.68 mm and 0.74-1.13 mm from the Synchrony traces. The Gaussian PDF method was found to be the most accurate, followed by the Kalman filter, the interdimensional correlation method, and the arbitrary-shape PDF method. Tracking error was found to strongly and positively correlate with motion magnitude for both the Synchrony and Calypso traces and for all four methods. Interdimensional correlation and BPI were found to negatively correlate with tracking error only for the Synchrony traces. The Synchrony traces exhibited higher interdimensional correlation than the Calypso traces especially in the anterior-posterior direction. CONCLUSION: Inferred traces often exhibit higher interdimensional correlation, which are not true representation of thoracic/abdominal motion and may underestimate kV-based tracking errors. The use of internal traces acquired from systems such as Calypso is advised for future kV-based tracking studies. The Gaussian PDF method is the most accurate 2D-3D inference method for tracking thoracic/abdominal targets. Motion magnitude has significant impact on 2D-3D inference error, and should be considered when estimating kV-based tracking error

    Dose reconstruction including dynamic six-degree of freedom motion during prostate radiotherapy

    Full text link
    © Published under licence by IOP Publishing Ltd. An in-house developed program for real-time reconstruction of motion-induced dose errors, DoseTracker, was extended to handle rotational target motion in addition to the previously implemented translational motion, and applied offline for prostate VMAT treatments. For translational motion, the motion-induced errors of DoseTracker were in good agreement with ground truth dose reconstructions performed in a commercial treatment planning system. For rotational motion, no ground truth was available, but DoseTracker showed that the VMAT dose is highly robust against static interfractional rotations but quite sensitive to dynamic intrafraction rotations due to interplay effects between target motion and machine motion

    Quantifying the accuracy and precision of a novel real-time 6 degree-of-freedom kilovoltage intrafraction monitoring (KIM) target tracking system.

    Get PDF
    Target rotation can considerably impact the delivered radiotherapy dose depending on the tumour shape. More accurate tumour pose during radiotherapy treatment can be acquired through tracking in 6 degrees-of-freedom (6 DoF) rather than in translation only. A novel real-time 6 DoF kilovoltage intrafraction monitoring (KIM) target tracking system has recently been developed. In this study, we experimentally evaluated the accuracy and precision of the 6 DoF KIM implementation. Real-time 6 DoF KIM motion measurements were compared against the ground truth motion retrospectively derived from kV/MV triangulation for a range of lung and prostate tumour motion trajectories as well as for various static poses using a phantom. The accuracy and precision of 6 DoF KIM were calculated as the mean and standard deviation of the differences between KIM and kV/MV triangulation for each DoF, respectively. We found that KIM is able to provide 6 DoF motion with sub-degree and sub-millimetre accuracy and precision for a range of realistic tumour motion

    An augmented correlation framework for the estimation of tumour translational and rotational motion during external beam radiotherapy treatments using intermittent monoscopic x-ray imaging and an external respiratory signal

    Get PDF
    © 2018 Institute of Physics and Engineering in Medicine. Increasing evidence shows that intrafraction tumour motion monitoring must include both six degrees of freedom (6DoF): 3D translations and 3D rotations. Existing real-time algorithms for 6DoF target motion estimation require continuous intrafraction fluoroscopic imaging at high frequency, thereby exposing patients to additional high imaging dose. This paper presents the first method capable of 6DoF motion monitoring using intermittent 2D kV imaging and a continuous external respiratory signal. Our approach is to optimise a state-augmented linear correlation model between an external signal and internal 6DoF motion. In standard treatments, the model can be built using information obtained during pre-treatment cone beam CT (CBCT). Real-time 6DoF tumor motion can then be estimated using just the external signal. Intermittent intrafraction kV images are used to update the model parameters, accounting for changes in correlation and baseline shifts. The method was evaluated in silico using data from 6 lung SABR patients, with the internal tumour motion recorded with electromagnetic beacons and the external signal from a bellows belt. Projection images from CBCT (10 Hz) and intermittent kV images were simulated by projecting the 3D Calypso beacon positions onto an imager. IMRT and VMAT treatments were simulated with increasing imaging update intervals: 0.1 s, 1 s, 3 s, 10 s and 30 s. For all the tested clinical scenarios, translational motion estimates with our method had sub-mm accuracy (mean) and precision (standard deviation) while rotational motion estimates were accurate to < and precise to . Motion estimation errors increased as the imaging update interval increased. With the largest imaging update interval (30 s), the errors were mm, mm and mm for translation in the left-right, superior-inferior and anterior-posterior directions, respectively, and , and for rotation around the aforementioned axes for both VMAT and IMRT treatments. In conclusion, we developed and evaluated a novel method for highly accurate real-time 6DoF motion monitoring on a standard linear accelerator without requiring continuous kV imaging. The proposed method achieved sub-mm and sub-degree accuracy on a lung cancer patient dataset

    A formal proof of the Kepler conjecture

    No full text
    This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project

    The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnam, 1997-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus suis </it>is an emerging zoonotic pathogen and is the leading cause of bacterial meningitis in adults in Vietnam. Systematic data on the antimicrobial susceptibility profiles of <it>S. suis </it>strains isolated from human cases are lacking. We studied antimicrobial resistance and associated resistance determinants in <it>S. suis </it>isolated from patients with meningitis in southern Vietnam.</p> <p>Methods</p> <p><it>S. suis </it>strains isolated between 1997 and 2008 were investigated for their susceptibility to six antimicrobial agents. Strains were screened for the presence and expression of tetracycline and erythromycin resistance determinants and the association of <it>tet</it>(M) genes with <it>Tn</it>916- like transposons. The localization of tetracycline resistance gene <it>tet</it>(L) was determined by pulse field gel electrophoresis and Southern blotting.</p> <p>Results</p> <p>We observed a significant increase in resistance to tetracycline and chloramphenicol, which was concurrent with an increase in multi-drug resistance. In tetracycline resistance strains, we identified <it>tet</it>(M), <it>tet</it>(O), <it>tet</it>(W) and <it>tet</it>(L) and confirmed their expression. All <it>tet</it>(M) genes were associated with a <it>Tn</it>916-like transposon. The co-expression of <it>tet</it>(L) and other tetracycline resistance gene(s) encoding for ribosomal protection protein(s) was only detected in strains with a minimum inhibitory concentration (MIC) of tetracycline of ≥ 64 mg/L</p> <p>Conclusions</p> <p>We demonstrated that multi-drug resistance in <it>S. suis </it>causing disease in humans in southern Vietnam has increased over the 11-year period studied. We report the presence and expression of <it>tet</it>(L) in <it>S. suis </it>strains and our data suggest that co-expression of multiple genes encoding distinct mechanism is required for an MIC ≥ 64 mg/L to tetracycline.</p

    Study protocol of the LARK (TROG 17.03) clinical trial: a phase II trial investigating the dosimetric impact of Liver Ablative Radiotherapy using Kilovoltage intrafraction monitoring

    Get PDF
    BACKGROUND: Stereotactic Ablative Body Radiotherapy (SABR) is a non-invasive treatment which allows delivery of an ablative radiation dose with high accuracy and precision. SABR is an established treatment for both primary and secondary liver malignancies, and technological advances have improved its efficacy and safety. Respiratory motion management to reduce tumour motion and image guidance to achieve targeting accuracy are crucial elements of liver SABR. This phase II multi-institutional TROG 17.03 study, Liver Ablative Radiotherapy using Kilovoltage intrafraction monitoring (LARK), aims to investigate and assess the dosimetric impact of the KIM real-time image guidance technology. KIM utilises standard linear accelerator equipment and therefore has the potential to be a widely available real-time image guidance technology for liver SABR. METHODS: Forty-six patients with either hepatocellular carcinoma or oligometastatic disease to the liver suitable for and treated with SABR using Kilovoltage Intrafraction Monitoring (KIM) guidance will be included in the study. The dosimetric impact will be assessed by quantifying accumulated patient dose distribution with or without the KIM intervention. The patient treatment outcomes of local control, toxicity and quality of life will be measured. DISCUSSION: Liver SABR is a highly effective treatment, but precise dose delivery is challenging due to organ motion. Currently, there is a lack of widely available options for performing real-time tumour localisation to assist with accurate delivery of liver SABR. This study will provide an assessment of the impact of KIM as a potential solution for real-time image guidance in liver SABR. TRIAL REGISTRATION: This trial was registered on December 7th 2016 on ClinicalTrials.gov under the trial-ID NCT02984566

    MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose.

    Get PDF
    Background and purposeThe purpose of this work is to present the clinical experience from the first-in-human trial of real-time tumor targeting via MLC tracking for stereotactic ablative body radiotherapy (SABR) of lung lesions.Methods and materialsSeventeen patients with stage 1 non-small cell lung cancer (NSCLC) or lung metastases were included in a study of electromagnetic transponder-guided MLC tracking for SABR (NCT02514512). Patients had electromagnetic transponders inserted near the tumor. An MLC tracking SABR plan was generated with planning target volume (PTV) expanded 5 mm from the end-exhale gross tumor volume (GTV). A clinically approved comparator plan was generated with PTV expanded 5 mm from a 4DCT-derived internal target volume (ITV). Treatment was delivered using a standard linear accelerator to continuously adapt the MLC based on transponder motion. Treated volumes and reconstructed delivered dose were compared between MLC tracking and comparator ITV-based treatment.ResultsAll seventeen patients were successfully treated with MLC tracking (70 successful fractions). MLC tracking treatment delivery time averaged 8 minutes. The time from the start of CBCT to the end of treatment averaged 22 minutes. The MLC tracking PTV for 16/17 patients was smaller than the ITV-based PTV (range -1.6% to 44% reduction, or -0.6 to 18 cc). Reductions in mean lung dose (27 cGy) and V20Gy (50 cc) were statistically significant (p ConclusionThe first treatments with lung MLC tracking have been successfully performed in seventeen SABR patients. MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider
    • …
    corecore