16 research outputs found

    Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean

    Get PDF
    Calcium ion is an intracellular messenger that plays a central role in signal transduction pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) signal network have shown different functions in the Ca(2+) signaling process. In this work, we identified the entire soybean (Glycine max) CIPK gene family, which comprised 52 genes and divided into four subgroups (I to IV) based on phylogeny. The gene structural analysis separated these 52 genes into an intron-rich clade and an intron-poor clade. Chromosomal location analysis resulted in the identification of 22 duplicated blocks and six tandem duplication events. Phylogenetic classification of 193 CIPK proteins from representative plant species suggested that the intron-poor clade of CIPKs originated in seed plants. Analysis of global gene expression patterns of soybean CIPK family revealed that most intron-poor soybean CIPK genes are drought-inducible; a finding that was further confirmed using qRT-PCR. Our study provides a foundation for further functional analysis to reveal the roles that CIPKs and more specifically the intron-poor clade play in drought tolerance in soybean

    The importance of cryptic species and subspecific populations in classic biological control of weeds: a North American perspective

    No full text
    Classical biological control of weeds depends on finding agents that are highly host-specific. This requires not only correctly understanding the identity of the target plant, sometimes to subspecific levels, in order to find suitable agents, but also identifying agents that are sufficiently specific to be safe and effective. Behavioral experiments and molecular genetic tools have revealed that some arthropod species previously thought to be polyphagous really consist of multiple cryptic species, host races or biotypes, some of which are more host-specific than others. Whereas true species are reproductively isolated, individuals from subspecific populations may potentially interbreed with those of other populations if they should encounter them. Furthermore, biotypes may consist of individuals sharing a genotype that is not fixed within a monophyletic group, and thus may not be evolutionarily stable. This raises the question of how such populations should be classified, and how to confirm the identity of live arthropods before releasing them as classical biological control agents. The existence of host races or cryptic species may greatly increase the number of prospective biological control agents available. However, it may also create new challenges for governmental regulation. These issues are discussed using pertinent examples, mainly from North America
    corecore