8 research outputs found

    Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage

    Get PDF
    Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.- Background - Results -- Authentication of a preserved oral biofilm in calculus samples -- Dental calculus and plaque biofilm communities are distinct -- Health-associated communities of dental plaque and calculus are distinct -- Signatures of health and of disease are shared in modern and historic calculus samples -- Microbial community differences between health and disease in calculus are poorly resolved -- Absence of caries-specific microbial profiles in dental calculus -- Microbial co-exclusion patterns in plaque and calculus reflect biofilm maturity -- Microbial complexes in plaque and calculus -- Functional prediction in calculus is poorly predictive of health status -- Proteomic profiles of historic healthy site calculus -- Correlations between taxonomic, proteomic, and metabolomic profiles - Discussion - Conclusions - Materials and methods --Historic and modern calculus sample collection DNA extraction -- DNA library construction and high-throughput sequencing -- DNA sequence processing -- Genetic assessment of historic calculus sample preservation -- Genetic microbial taxonomic profiling -- Principal component analysis -- Assessment of differentially abundant taxa -- Sparse partial least squares-discriminant analysis -- Assessment of microbial co-exclusion patterns -- Gene functional categorization with SEED -- Proteomics -- Metabolomics -- Regularized canonical correlation analysi

    Bladder Sparing Approaches for Muscle-Invasive Bladder Cancers.

    Get PDF
    OPINION STATEMENT: Organ preservation has been increasingly utilised in the management of muscle-invasive bladder cancer. Multiple bladder preservation options exist, although the approach of maximal TURBT performed along with chemoradiation is the most favoured. Phase III trials have shown superiority of chemoradiotherapy compared to radiotherapy alone. Concurrent chemoradiotherapy gives local control outcomes comparable to those of radical surgery, but seemingly more superior when considering quality of life. Bladder-preserving techniques represent an alternative for patients who are unfit for cystectomy or decline major surgical intervention; however, these patients will need lifelong rigorous surveillance. It is important to emphasise to the patients opting for organ preservation the need for lifelong bladder surveillance as risk of recurrence remains even years after radical chemoradiotherapy treatment. No randomised control trials have yet directly compared radical cystectomy with bladder-preserving chemoradiation, leaving the age-old question of superiority of one modality over another unanswered. Radical cystectomy and chemoradiation, however, must be seen as complimentary treatments rather than competing treatments. Meticulous patient selection is vital in treatment modality selection with the success of recent trials within the field of bladder preservation only being possible through this application of meticulous selection criteria compared to previous decades. A multidisciplinary approach with radiation oncologists, medical oncologists, and urologists is needed to closely monitor patients who undergo bladder preservation in order to optimise outcomes

    Heavy Metal–Induced Gene Expression in Plants

    No full text
    corecore