631 research outputs found

    Percutaneous coronary intervention in asians- are there differences in clinical outcome?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethnic differences in clinical outcome after percutaneous coronary intervention (PCI) have been reported. Data within different Asian subpopulations is scarce. We aim to explore the differences in clinical profile and outcome between Chinese, Malay and Indian Asian patients who undergo PCI for coronary artery disease (CAD).</p> <p>Methods</p> <p>A prospective registry of consecutive patients undergoing PCI from January 2002 to December 2007 at a tertiary care center was analyzed. Primary endpoint was major adverse cardiovascular events (MACE) of myocardial infarction (MI), repeat revascularization and all-cause death at six months.</p> <p>Results</p> <p>7889 patients underwent PCI; 7544 (96%) patients completed follow-up and were included in the analysis (79% males with mean age of 59 years ± 11). There were 5130 (68%) Chinese, 1056 (14%) Malays and 1001 (13.3%) Indian patients. The remaining 357 (4.7%) patients from other minority ethnic groups were excluded from the analysis. The primary end-point occurred in 684 (9.1%) patients at six months. Indians had the highest rates of six month MACE compared to Chinese and Malays (Indians 12% vs. Chinese 8.2% vs. Malays 10.7%; OR 1.55 95%CI 1.24-1.93, p < 0.001). This was contributed by increased rates of MI (Indians 1.9% vs. Chinese 0.9% vs. Malays 1.3%; OR 4.49 95%CI 1.91-10.56 p = 0.001), repeat revascularization (Indians 6.5% vs. Chinese 4.1% vs. Malays 5.1%; OR 1.64 95%CI 1.22-2.21 p = 0.0012) and death (Indians 11.4% vs. Chinese 7.6% vs. Malays 9.9%; OR 1.65 95%CI 1.23-2.20 p = 0.001) amongst Indian patients.</p> <p>Conclusion</p> <p>These data indicate that ethnic variations in clinical outcome exist following PCI. In particular, Indian patients have higher six month event rates compared to Chinese and Malays. Future studies are warranted to elucidate the underlying mechanisms behind these variations.</p

    Local Signal Time-Series during Rest Used for Areal Boundary Mapping in Individual Human Brains

    Get PDF
    It is widely thought that resting state functional connectivity likely reflects functional interaction among brain areas and that different functional areas interact with different sets of brain areas. A method for mapping areal boundaries has been formulated based on the large-scale spatial characteristics of regional interaction revealed by resting state functional connectivity. In the present study, we present a novel analysis for areal boundary mapping that requires only the signal timecourses within a region of interest, without reference to the information from outside the region. The areal boundaries were generated by the novel analysis and were compared with those generated by the previously-established standard analysis. The boundaries were robust and reproducible across the two analyses, in two regions of interest tested. These results suggest that the information for areal boundaries is readily available inside the region of interest

    ATP-Sensitive Potassium Channels Exhibit Variance in the Number of Open Channels below the Limit Predicted for Identical and Independent Gating

    Get PDF
    In small cells containing small numbers of ion channels, noise due to stochastic channel opening and closing can introduce a substantial level of variability into the cell's membrane potential. Negatively cooperative interactions that couple a channel's gating conformational change to the conformation of its neighbor(s) provide a potential mechanism for mitigating this variability, but such interactions have not previously been directly observed. Here we show that heterologously expressed ATP-sensitive potassium channels generate noise (i.e., variance in the number of open channels) below the level possible for identical and independent channels. Kinetic analysis with single-molecule resolution supports the interpretation that interchannel negative cooperativity (specifically, the presence of an open channel making a closed channel less likely to open) contributes to the decrease in noise. Functional coupling between channels may be important in modulating stochastic fluctuations in cellular signaling pathways

    Combinations of Host Biomarkers Predict Mortality among Ugandan Children with Severe Malaria: A Retrospective Case-Control Study

    Get PDF
    Background: Severe malaria is a leading cause of childhood mortality in Africa. However, at presentation, it is difficult to predict which children with severe malaria are at greatest risk of death. Dysregulated host inflammatory responses and endothelial activation play central roles in severe malaria pathogenesis. We hypothesized that biomarkers of these processes would accurately predict outcome among children with severe malaria. Methodology/Findings: Plasma was obtained from children with uncomplicated malaria (n = 53), cerebral malaria (n = 44) and severe malarial anemia (n = 59) at time of presentation to hospital in Kampala, Uganda. Levels of angiopoietin-2, von Willebrand Factor (vWF), vWF propeptide, soluble P-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), soluble endoglin, soluble FMS-like tyrosine kinase-1 (Flt-1), soluble Tie-2, C-reactive protein, procalcitonin, 10 kDa interferon gamma-induced protein (IP-10), and soluble triggering receptor expressed on myeloid cells-1 (TREM-1) were determined by ELISA. Receiver operating characteristic (ROC) curve analysis was used to assess predictive accuracy of individual biomarkers. Six biomarkers (angiopoietin-2, soluble ICAM-1, soluble Flt-1, procalcitonin, IP-10, soluble TREM-1) discriminated well between children who survived severe malaria infection and those who subsequently died (area under ROC curve&gt;0.7). Combinational approaches were applied in an attempt to improve accuracy. A biomarker score was developed based on dichotomization and summation of the six biomarkers, resulting in 95.7% (95% CI: 78.1-99.9) sensitivity and 88.8% (79.7-94.7) specificity for predicting death. Similar predictive accuracy was achieved with models comprised of 3 biomarkers. Classification tree analysis generated a 3-marker model with 100% sensitivity and 92.5% specificity (cross-validated misclassification rate: 15.4%, standard error 4.9%). Conclusions: We identified novel host biomarkers of pediatric severe and fatal malaria (soluble TREM-1 and soluble Flt-1) and generated simple biomarker combinations that accurately predicted death in an African pediatric population. While requiring validation in further studies, these results suggest the utility of combinatorial biomarker strategies as prognostic tests for severe malaria

    Clinical significance of heparin-binding epidermal growth factor-like growth factor in peritoneal fluid of ovarian cancer

    Get PDF
    Epidermal growth factor receptor (EGFR) has been implicated in tumour growth and extension of ovarian cancer. Peritoneal fluid in ovarian cancer patients contains various growth factors that can promote tumour growth and extension. In order to investigate the clinical significance of EGFR ligands as activating factors of ovarian cancer, we examined the cell proliferation-promoting activity and the level of EGFR ligands in peritoneal fluid obtained from 99 patients. Proliferation-promoting activity in peritoneal fluid from 63 ovarian cancer patients (OVCA) was much higher than peritoneal fluid from 18 ovarian cyst patients (OVC) and 18 normal ovary patients (NO), and the activity was suppressed only by antibodies against EGFR or heparin-binding epidermal growth factor (HB-EGF). A large difference was observed in the level of EGFR ligands between HB-EGF and TGF-α or amphiregulin. The concentration of HB-EGF in OVCA significantly increased compared to that in OVC or NO (P<0.01). No significant difference in the concentration of TGF-α and amphiregulin was found between the OVCA and NO or OVC groups. In peritoneal fluid, HB-EGF is sufficiently elevated to activate cancer cells even at an early stage of OVCA. These results suggested that HB-EGF in peritoneal fluid might play a key role in cell survival and in the proliferation of OVCA

    The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    Get PDF
    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats

    The miR-35-41 Family of MicroRNAs Regulates RNAi Sensitivity in Caenorhabditis elegans

    Get PDF
    RNA interference (RNAi) utilizes small interfering RNAs (siRNAs) to direct silencing of specific genes through transcriptional and post-transcriptional mechanisms. The siRNA guides can originate from exogenous (exo–RNAi) or natural endogenous (endo–RNAi) sources of double-stranded RNA (dsRNA). In Caenorhabditis elegans, inactivation of genes that function in the endo–RNAi pathway can result in enhanced silencing of genes targeted by siRNAs from exogenous sources, indicating cross-regulation between the pathways. Here we show that members of another small RNA pathway, the mir-35-41 cluster of microRNAs (miRNAs) can regulate RNAi. In worms lacking miR-35-41, there is reduced expression of lin-35/Rb, the C. elegans homolog of the tumor suppressor Retinoblastoma gene, previously shown to regulate RNAi responsiveness. Genome-wide microarray analyses show that targets of endo–siRNAs are up-regulated in mir-35-41 mutants, a phenotype also displayed by lin-35/Rb mutants. Furthermore, overexpression of lin-35/Rb specifically rescues the RNAi hypersensitivity of mir-35-41 mutants. Although the mir-35-41 miRNAs appear to be exclusively expressed in germline and embryos, their effect on RNAi sensitivity is transmitted to multiple tissues and stages of development. Additionally, we demonstrate that maternal contribution of miR-35-41 or lin-35/Rb is sufficient to reduce RNAi effectiveness in progeny worms. Our results reveal that miRNAs can broadly regulate other small RNA pathways and, thus, have far reaching effects on gene expression beyond directly targeting specific mRNAs
    corecore