23 research outputs found

    Collective sensing and collective responses in quorum-sensing bacteria

    Get PDF
    Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechanism of sensing. In addition, some environmental challenges are best faced by a group of cells rather than an individual. In this review, we discuss how bacteria sense and overcome environmental challenges as a group using collective mechanisms of sensing, known as ‘quorum sensing’ (QS). QS is characterized by the release and detection of small molecules, potentially allowing individuals to infer environmental parameters such as density and mass transfer. While a great deal of the molecular mechanisms of QS have been described, there is still controversy over its functional role. We discuss what QS senses and how, what it controls and why, and how social dilemmas shape its evolution. Finally, there is a growing focus on the use of QS inhibitors as antibacterial chemotherapy. We discuss the claim that such a strategy could overcome the evolution of resistance. By linking existing theoretical approaches to data, we hope this review will spur greater collaboration between experimental and theoretical researchers

    A population-based nested case control study on recurrent pneumonias in children with severe generalized cerebral palsy: ethical considerations of the design and representativeness of the study sample

    Get PDF
    BACKGROUND: In children with severe generalized cerebral palsy, pneumonias are a major health issue. Malnutrition, dysphagia, gastro-oesophageal reflux, impaired respiratory function and constipation are hypothesized risk factors. Still, no data are available on the relative contribution of these possible risk factors in the described population. This paper describes the initiation of a study in 194 children with severe generalized cerebral palsy, on the prevalence and on the impact of these hypothesized risk factors of recurrent pneumonias. METHODS/DESIGN: A nested case-control design with 18 months follow-up was chosen. Dysphagia, respiratory function and constipation will be assessed at baseline, malnutrition and gastro-oesophageal reflux at the end of the follow-up. The study population consists of a representative population sample of children with severe generalized cerebral palsy. Inclusion was done through care-centres in a predefined geographical area and not through hospitals. All measurements will be done on-site which sets high demands on all measurements. If these demands were not met in "gold standard" methods, other methods were chosen. Although the inclusion period was prolonged, the desired sample size of 300 children was not met. With a consent rate of 33%, nearly 10% of all eligible children in The Netherlands are included (n = 194). The study population is subtly different from the non-participants with regard to severity of dysphagia and prevalence rates of pneumonias and gastro-oesophageal reflux. DISCUSSION: Ethical issues complicated the study design. Assessment of malnutrition and gastro-oesophageal reflux at baseline was considered unethical, since these conditions can be easily treated. Therefore, we postponed these diagnostics until the end of the follow-up. In order to include a representative sample, all eligible children in a predefined geographical area had to be contacted. To increase the consent rate, on-site measurements are of first choice, but timely inclusion is jeopardized. The initiation of this first study among children with severe neurological impairment led to specific, unexpected problems. Despite small differences between participants and non-participating children, our sample is as representative as can be expected from any population-based study and will provide important, new information to bring us further towards effective interventions to prevent pneumonias in this population

    Rapid reprogramming of haemoglobin structure-function exposes multiple dual-antimicrobial potencies

    No full text
    The intrinsic cytotoxicity of cell-free haemoglobin (Hb) has hampered the development of reliable Hb-based blood substitutes for over seven decades. Notably, recent evidence shows that the Hb deploys this cytotoxic attack against invading microbes, albeit, through an unknown mechanism. Here, we unraveled a rapid molecular reprogramming of the Hb structure-function triggered by virulent haemolytic pathogens that feed on the haem-iron. On direct contact with the microbe, the Hb unveils its latent antimicrobial potency, where multiple antimicrobial fragments are released, each harbouring coordinated ‘dual-action centres': microbe binding and pseudoperoxidase (POX) cycle activity. The activated Hb fragments anchor onto the microbe while the juxtaposed POX instantly unleashes a localized oxidative shock, killing the pathogen-in-proximity. This concurrent action conceivably restricts the diffusion of free radicals. Furthermore, the host astutely protects itself from self-cytotoxicity by simultaneously releasing endogenous antioxidants. We found that this decryption mechanism of antimicrobial potency is conserved in the ancient invertebrate respiratory protein, indicating its fundamental significance. Our definition of dual-antimicrobial centres in the Hb provides vital clues for designing a safer Hb-based oxygen carrier blood substitute

    Mechanistic analysis of a synthetic inhibitor of the LasI quorum-sensing signal synthase

    No full text
    Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases

    Quorum sensing antagonism from marine organisms

    No full text
    With the global emergence of multiresistant bacteria there is an increasing demand for development of new treatments to combat pathogens. Bacterial cell–cell communication [quorum sensing (QS)] regulates expression of virulence factors in a number of bacterial pathogens and is a new promising target for the control of infectious bacteria. We present the results of screening of 284 extracts of marine organisms from the Great Barrier Reef, Australia, for their inhibition of QS. Of the 284 extracts, 64 (23%) were active in a general, LuxR-derived QS screen, and of these 36 (56%) were also active in a specific Pseudomonas aeruginosa QS screen. Extracts of the marine sponge Luffariella variabilis proved active in both systems. The secondary metabolites manoalide, manoalide monoacetate, and secomanoalide isolated from the sponge showed strong QS inhibition of a lasB::gfp(ASV) fusion, demonstrating the potential for further identification of specific QS antagonists from marine organisms
    corecore