13 research outputs found

    Design of RNAi Hairpins for Mutation-Specific Silencing of Ataxin-7 and Correction of a SCA7 Phenotype

    Get PDF
    Spinocerebellar ataxia type 7 is a polyglutamine disorder caused by an expanded CAG repeat mutation that results in neurodegeneration. Since no treatment exists for this chronic disease, novel therapies such post-transcriptional RNA interference-based gene silencing are under investigation, in particular those that might enable constitutive and tissue-specific silencing, such as expressed hairpins. Given that this method of silencing can be abolished by the presence of nucleotide mismatches against the target RNA, we sought to identify expressed RNA hairpins selective for silencing the mutant ataxin-7 transcript using a linked SNP. By targeting both short and full-length tagged ataxin-7 sequences, we show that mutation-specific selectivity can be obtained with single nucleotide mismatches to the wild-type RNA target incorporated 3′ to the centre of the active strand of short hairpin RNAs. The activity of the most effective short hairpin RNA incorporating the nucleotide mismatch at position 16 was further studied in a heterozygous ataxin-7 disease model, demonstrating significantly reduced levels of toxic mutant ataxin-7 protein with decreased mutant protein aggregation and retention of normal wild-type protein in a non-aggregated diffuse cellular distribution. Allele-specific mutant ataxin7 silencing was also obtained with the use of primary microRNA mimics, the most highly effective construct also harbouring the single nucleotide mismatch at position 16, corroborating our earlier findings. Our data provide understanding of RNA interference guide strand anatomy optimised for the allele-specific silencing of a polyglutamine mutation linked SNP and give a basis for the use of allele-specific RNA interference as a viable therapeutic approach for spinocerebellar ataxia 7

    A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons

    No full text
    Neuronal transmission of information requires polarized distribution of membrane proteins within axonal compartments. Membrane proteins are synthesized and packaged in membrane-bounded organelles (MBOs) in neuronal cell bodies and later transported to axons by microtubule-dependent motor proteins. Molecular mechanisms underlying targeted delivery of MBOs to discrete axonal subdomains (i.e. nodes of Ranvier or presynaptic terminals) are poorly understood, but regulatory pathways for microtubule motors may be an essential step. In this work, pharmacological, biochemical and in vivo experiments define a novel regulatory pathway for kinesin-driven motility in axons. This pathway involves enzymatic activities of cyclin-dependent kinase 5 (CDK5), protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK3). Inhibition of CDK5 activity in axons leads to activation of GSK3 by PP1, phosphorylation of kinesin light chains by GSK3 and detachment of kinesin from transported cargoes. We propose that regulating the activity and localization of components in this pathway allows nerve cells to target organelle delivery to specific subcellular compartments. Implications of these findings for pathogenesis of neurodegenerative diseases such as Alzheimer's disease are discussed

    Parental genetic distance and patterns in nonrandom mating and seed yield in predominately selfing Arabidopsis thaliana

    Get PDF
    Citation: Carlson, A., Gong, H., Toomajin, C., Swanson, R. (2013). Parental genetic distance and patterns in nonrandom mating and seed yield in predominately selfing Arabidopsis thaliana. Plant Reproduction, 26(4), 317-328. https://doi.org/10.1007/s00497-013-0228-5In this study, we ask two questions: (1) Is reproductive success independent of parental genetic distance in predominately selfing plants? (2) In the absence of early inbreeding depression, is there substantial maternal and/or paternal variation in reproductive success in natural populations? Seed yield in single pollinations and proportion of seeds sired in mixed pollinations were studied in genetically defined accessions of the predominately selfing plant Arabidopsis thaliana by conducting two diallel crosses. The first diallel was a standard, single pollination design that we used to examine variance in seed yield. The second diallel was a mixed pollination design that utilized a standard pollen competitor to examine variance in proportion of seeds sired. We found no correlation between reproductive success and parental genetic distance, and self-pollen does not systematically differ in reproductive success compared to outcross pollen, suggesting that Arabidopsis populations do not experience embryo lethality due to early-acting inbreeding or outbreeding depression. We used these data to partition the contributions to total phenotypic variation from six sources, including maternal contributions, paternal contributions and parental interactions. For seed yield in single pollinations, maternal effects accounted for the most significant source of variance (16.6 %). For proportion of seeds sired in mixed pollinations, the most significant source of variance was paternal effects (17.9 %). Thus, we show that population-level genetic similarities, including selfing, do not correlate with reproductive success, yet there is still significant paternal variance under competition. This suggests two things. First, since these differences are unlikely due to early-acting inbreeding depression or differential pollen viability, this implicates natural variation in pollen germination and tube growth dynamics. Second, this strongly supports a model of fixation of pollen performance genes in populations, offering a focus for future genetic studies in differential reproductive success

    Cargo selection by specific kinesin light chain 1 isoforms

    No full text
    Kinesin-1 drives the movement of diverse cargoes, and it has been proposed that specific kinesin light chain (KLC) isoforms target kinesin-1 to these different structures. Here, we test this hypothesis using two in vitro motility assays, which reconstitute the movement of rough endoplasmic reticulum (RER) and vesicles present in a Golgi membrane fraction. We generated GST-tagged fusion proteins of KLC1B and KLC1D that included the tetratricopeptide repeat domain and the variable C-terminus. We find that preincubation of RER with KLC1B inhibits RER motility, whereas KLC1D does not. In contrast, Golgi fraction vesicle movement is inhibited by KLC1D but not KLC1B reagents. Both RER and vesicle movement is inhibited by preincubation with the GST-tagged C-terminal domain of ubiquitous kinesin heavy chain (uKHC), which binds to the N-terminal domain of uKHC and alters its interaction with microtubules. We propose that although the TRR domains are required for cargo binding, it is the variable C-terminal region of KLCs that are vital for targeting kinesin-1 to different cellular structures

    How were new medicines discovered?

    No full text

    Eukaryotic transcriptional dynamics: from single molecules to cell populations

    No full text
    corecore