9 research outputs found

    Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS

    Get PDF
    Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optical coherence tomography is a powerful and easy to perform diagnostic tool to analyse the morphological integrity of retinal structures and is increasingly established to depict characteristic patterns of retinal pathology in multiple sclerosis. Against this background we hypothesised that differential patterns of retinal pathology facilitate a reliable differentiation between Susac syndrome and multiple sclerosis. In this multicenter cross-sectional observational study optical coherence tomography was performed in nine patients with a definite diagnosis of Susac syndrome. Data were compared with age-, sex-, and disease duration-matched relapsing remitting multiple sclerosis patients with and without a history of optic neuritis, and with healthy controls. Using generalised estimating equation models, Susac patients showed a significant reduction in either or both retinal nerve fibre layer thickness and total macular volume in comparison to both healthy controls and relapsing remitting multiple sclerosis patients. However, in contrast to the multiple sclerosis patients this reduction was not distributed over the entire scanning area but showed a distinct sectorial loss especially in the macular measurements. We therefore conclude that patients with Susac syndrome show distinct abnormalities in optical coherence tomography in comparison to multiple sclerosis patients. These findings recommend optical coherence tomography as a promising tool for differentiating Susac syndrome from MS

    Regulatory NK-Cell Functions in Inflammation and Autoimmunity

    No full text
    Natural killer (NK) cells were viewed traditionally as cytotoxic effector cells whose rapid killing of infected and transformed cells without preactivation provides a first line of defense prior to the initiation of an adaptive immune response against infection and tumor development. However, it has become clear that NK cells interact with various components of the immune system, and therefore have the potential to function as regulatory cells. While NK cells can assist in dendritic cell (DC) maturation and T-cell polarization, increasing evidence indicates that NK cells can also prevent and limit adaptive (auto) immune responses via killing of autologous myeloid and lymphoid cells. Investigating immunoregulatory NK-cell functions might generate exciting insights into the reciprocal regulation between NK-cell–mediated innate immunity and adaptive immune responses, improve our capacity to monitor these cells as surrogate markers for disease activity and treatment responses in autoimmune diseases, and, perhaps, provide new prospects for NK cell-directed therapies

    Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability?

    No full text

    The Emerging Role of Autoimmunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/cfs)

    No full text
    corecore