272 research outputs found

    Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug.</p> <p>Methods</p> <p>The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied <it>in vitro </it>by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1.</p> <p>Results</p> <p>Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the αβ intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic effects against MCF-7 cell proliferation.</p> <p>Conclusions</p> <p>The study provided evidence suggesting that griseofulvin shares its binding site in tubulin with paclitaxel and kinetically suppresses microtubule dynamics in a similar manner. The results revealed the antimitotic mechanism of action of griseofulvin and provided evidence suggesting that griseofulvin alone and/or in combination with vinblastine may have promising role in breast cancer chemotherapy.</p

    ZipA Binds to FtsZ with High Affinity and Enhances the Stability of FtsZ Protofilaments

    Get PDF
    A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0) pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them

    Synthesis of Novel Flower-Like Zn(OH)F via a Microwave-Assisted Ionic Liquid Route and Transformation into Nanoporous ZnO by Heat Treatment

    Get PDF
    Zinc hydroxide fluoride (Zn(OH)F) with novel flower-like morphology has been prepared via a microwave-assisted ionic liquid route. The flower-like Zn(OH)F particle has six petals and every petal is composed of lots of acicular nano-structure. Nanoporous ZnO is obtained by thermal decomposition of as-prepared Zn(OH)F in air, and the flower-like morphology is well retained. In the process of synthesis, ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate is used as both the reactant and the template

    Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Get PDF
    In the advancement of the semiconductor device technology, ZnO could be a prospective alternative than the other metal oxides for its versatility and huge applications in different aspects. In this review, a thorough overview on ZnO for the application of resistive switching memory (RRAM) devices has been conducted. Various efforts that have been made to investigate and modulate the switching characteristics of ZnO-based switching memory devices are discussed. The use of ZnO layer in different structure, the different types of filament formation, and the different types of switching including complementary switching are reported. By considering the huge interest of transparent devices, this review gives the concrete overview of the present status and prospects of transparent RRAM devices based on ZnO. ZnO-based RRAM can be used for flexible memory devices, which is also covered here. Another challenge in ZnO-based RRAM is that the realization of ultra-thin and low power devices. Nevertheless, ZnO not only offers decent memory properties but also has a unique potential to be used as multifunctional nonvolatile memory devices. The impact of electrode materials, metal doping, stack structures, transparency, and flexibility on resistive switching properties and switching parameters of ZnO-based resistive switching memory devices are briefly compared. This review also covers the different nanostructured-based emerging resistive switching memory devices for low power scalable devices. It may give a valuable insight on developing ZnO-based RRAM and also should encourage researchers to overcome the challenges

    Effects of thermal water inhalation in chronic upper respiratory tract infections in elderly and young patients

    Get PDF
    Background: Chronic upper respiratory tract infections (cURTI) are very frequent illnesses which occur at any age of life. In elderly, cURTI are complicated by immunosenescence, with involvement of lung immune responsiveness. Results: In the present study, 51 elderly (age range: 66-86) and 51 young (age range 24-58) cURTI patients underwent a single cycle (two weeks) of inhalatory therapy with salt-bromide-iodine thermal water in the thermal station "Margherita di Savoia" (Margherita di Savoia, BAT, Italy). Peripheral blood serum cytokines and clinical assessment were performed before therapy (T0) and after six months (T1) and 12 months (T2) from inhalatory treatment. In both elderly and young patients, at baseline an increased release of T helper (h)1-related cytokines [interleukin (IL)-2 and interferon-γ] and of Th2-related cytokine (IL-4) was documented. Inhalatory treatment reduced the excessive secretion of all the above-cited cytokines. IL-10 values were above normality at all times considered in both groups of patients. In addition, an increase in IL-17 and IL-21 serum levels following therapy was observed in both groups of patients. Pro-inflammatory cytokine (IL-1β, IL-6, IL-8 and tumor necrosis factor-α) baseline values were lower than normal values at T0 in both elderly and young cURTI patients. Their levels increased following inhalatory treatment. Clinically, at T2 a dramatic reduction of frequency of upper respiratory tract infections was recorded in both groups of patients. Conclusion: Thermal water inhalation is able to modulate systemic immune response in elderly and young cURTI patients, thus reducing excessive production of Th1 and Th2-related cytokines, on the one hand. On the other hand, increased levels of IL-21 (an inducer of Th17 cells) and of IL-17 may be interpreted as a protective mechanism, which likely leads to neutrophil recruitment in cURTI patients. Also restoration of pro-inflammatory cytokine release following inhalatory therapy may result in microbe eradication. Quite importantly, the maintenance of high levels of IL-10 during the follow-up would suggest a consistent regulatory role of this cytokine in attenuating the pro-inflammatory arm of the immune response

    Global Analysis of the Impact of Environmental Perturbation on cis-Regulation of Gene Expression

    Get PDF
    Genetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent by which controlled, environmental perturbation influences cis-eQTLs is unclear. We carried out large-scale induction experiments using primary human bone cells derived from unrelated donors of Swedish origin treated with 18 different stimuli (7 treatments and 2 controls, each assessed at 2 time points). The treatments with the largest impact on the transcriptome, verified on two independent expression arrays, included BMP-2 (t = 2h), dexamethasone (DEX) (t = 24h), and PGE2 (t = 24h). Using these treatments and control, we performed expression profiling for 18,144 RefSeq transcripts on biological replicates of the complete study cohort of 113 individuals (ntotal = 782) and combined it with genome-wide SNP-genotyping data in order to map treatment-specific cis-eQTLs (defined as SNPs located within the gene ±250 kb). We found that 93% of cis-eQTLs at 1% FDR were observed in at least one additional treatment, and in fact, on average, only 1.4% of the cis-eQTLs were considered as treatment-specific at high confidence. The relative invariability of cis-regulation following perturbation was reiterated independently by genome-wide allelic expression tests where only a small proportion of variance could be attributed to treatment. Treatment-specific cis-regulatory effects were, however, 2- to 6-fold more abundant among differently expressed genes upon treatment. We further followed-up and validated the DEX–specific cis-regulation of the MYO6 and TNC loci and found top cis-regulatory variants located 180 kb and 250 kb upstream of the transcription start sites, respectively. Our results suggest that, as opposed to tissue-specificity of cis-eQTLs, the interactions between cellular environment and cis-variants are relatively rare (∼1.5%), but that detection of such specific interactions can be achieved by a combination of functional genomic approaches as described here
    • …
    corecore