27 research outputs found

    Fast spin echo sequences for BOLD functional MRI

    Get PDF
    At higher field strengths, spin echo (SE) functional MRI (fMRI) is an attractive alternative to gradient echo (GE) as the increased weighting towards the microvasculature results in intrinsically better localization of the BOLD signal. Images are free of signal voids but the commonly used echo planar imaging (EPI) sampling scheme causes geometric distortions, and T2* effects often contribute considerably to the signal changes measured upon brain activation. Multiply refocused SE sequences such as fast spin echo (FSE) are essentially artifact free but their application to fast fMRI is usually hindered due to high energy deposition, and long sampling times. In the work presented here, a combination of parallel imaging and partial Fourier acquisition is used to shorten FSE acquisition times to near those of conventional SE-EPI, permitting sampling of eight slices (matrix 64  ×  64) per second. Signal acquisition is preceded by a preparation experiment that aims at increasing the relative contribution of extravascular dynamic averaging to the BOLD signal. Comparisons are made with conventional SE-EPI using a visual stimulation paradigm. While the observed signal changes are approximately 30% lower, most likely due to the absence of T2* contamination, activation size and t-scores are comparable for both methods, suggesting that HASTE fMRI is a viable alternative, particularly if distortion free images are required. Our data also indicate that the BOLD post-stimulus undershoot is most probably attributable to persistent elevated oxygen metabolism rather than to delayed vascular compliance

    Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Get PDF
    Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke

    Get PDF
    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models

    Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.

    Get PDF
    Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases

    The potential role of MR-guided adaptive radiotherapy in pediatric oncology: Results from a SIOPE-COG survey.

    No full text
    Background and purpose Magnetic resonance guided radiotherapy (MRgRT) has been successfully implemented for several routine clinical applications in adult patients. The purpose of this study is to map the potential benefit of MRgRT on toxicity reduction and outcome in pediatric patients treated with curative intent for primary and metastatic sites.Materials and methods Between May and August 2020, a survey was distributed among SIOPE- and COG-affiliated radiotherapy departments, treating at least 25 pediatrics patients annually and being (candidate) users of a MRgRT system. The survey consisted of a table with 45 rows (clinical scenarios for primary (n = 28) and metastatic (n = 17) tumors) and 7 columns (toxicity reduction, outcome improvement, PTV margin reduction, target volume daily adaptation, online re-planning, intrafraction motion compensation and on-board functional imaging) and the option to answer by 'yes/no' . Afterwards, the Dutch national radiotherapy cohort was used to estimate the percentage of pediatric treatments that may benefit from MRgRT.Results The survey was completed by 12/17 (71% response rate) institutions meeting the survey inclusion criteria. Responders indicated an 'expected benefit' from MRgRT for toxicity/outcome in 7% (for thoracic lymphomas and abdominal rhabdomyosarcomas)/0% and 18% (for mediastinal lymph nodes, lymph nodes located in the liver/splenic hilum, and liver metastases)/0% of the considered scenarios for the primary and metastatic tumor sites, respectively, and a 'possible benefit' was estimated in 64%/46% and 47%/59% of the scenarios. When translating the survey outcome into a clinical perspective a toxicity/outcome benefit, either expected or possible, was anticipated for 55%/24% of primary sites and 62%/38% of the metastatic sites.Conclusion Although the benefit of MRgRT in pediatric radiation oncology is estimated to be modest, the potential role for reducing toxicity and improving clinical outcomes warrants further investigation. This fits best within the context of prospective studies or registration trials

    Alveolar rhabdomyosarcoma with regional nodal involvement: Results of a combined analysis from two cooperative groups.

    No full text
    BACKGROUND: Treatment of children and adolescents with alveolar rhabdomyosarcoma (ARMS) and regional nodal involvement (N1) have been approached differently by North American and European cooperative groups. In order to define a better therapeutic strategy, we analyzed two studies conducted between 2005 and 2016 by the European paediatric Soft tissue sarcoma Study Group (EpSSG) and Children's Oncology Group (COG). METHODS: We retrospectively identified patients with ARMS N1 enrolled in either EpSSG RMS2005 or in COG ARST0531. Chemotherapy in RMS2005 comprised ifosfamide + vincristine + dactinomycin + doxorubicin (IVADo), IVA and maintenance (vinorelbine, cyclophosphamide); in ARST0531, it consisted of either vincristine + dactinomycin + cyclophosphamide (VAC) or VAC alternating with vincristine + irinotecan (VI). Local treatment was similar in both protocols. RESULTS: The analysis of the clinical characteristics of 239 patients showed some differences between study groups: in RMS2005, advanced Intergroup Rhabdomyosarcoma Study Group (IRS) and large tumors predominated. There were no differences in outcomes between the two groups: 5-year event-free survival (EFS), 49% (95% confidence interval [CI]: 39-59) and 44% (95% CI: 30-58), and overall survival (OS), 51% (95% CI: 41-61) and 53.6% (95% CI: 40-68) in RMS2005 and ARST0531, respectively. In RMS2005, EFS of patients with FOXO1-positive tumors was significantly inferior to those with FOXO1-negative (49.3% vs 73%, P = .034). In contrast, in ARST0531, EFS of patients with FOXO1-positive tumors was 45% compared with 43.8% for those with FOXO1-negative. CONCLUSIONS: The outcome of patients with ARMS N1 was similar in both protocols. However, patients with FOXO1 fusion-negative tumors enrolled in RMS2005 showed a significantly better outcome, suggesting that different strategies of chemotherapy may have an impact in the outcome of this subgroup of patients

    Functional and structural neural network characterization of serotonin transporter knockout rats

    Get PDF
    Contains fulltext : 125449.pdf (publisher's version ) (Open Access)Brain serotonin homeostasis is crucially maintained by the serotonin transporter (5-HTT), and its down-regulation has been linked to increased vulnerability for anxiety- and depression-related behavior. Studies in 5-HTT knockout (5-HTT(-/-)) rodents have associated inherited reduced functional expression of 5-HTT with increased sensitivity to adverse as well as rewarding environmental stimuli, and in particular cocaine hyperresponsivity. 5-HTT down-regulation may affect normal neuronal wiring of implicated corticolimbic cerebral structures. To further our understanding of its contribution to potential alterations in basal functional and structural properties of neural network configurations, we applied resting-state functional MRI (fMRI), pharmacological MRI of cocaine-induced activation, and diffusion tensor imaging (DTI) in 5-HTT(-/-) rats and wild-type controls (5-HTT(+/+)). We found that baseline functional connectivity values and cocaine-induced neural activity within the corticolimbic network was not significantly altered in 5-HTT(-/-) versus 5-HTT(+/+) rats. Similarly, DTI revealed mostly intact white matter structural integrity, except for a reduced fractional anisotropy in the genu of the corpus callosum of 5-HTT(-/-) rats. At the macroscopic level, analyses of complex graphs constructed from either functional connectivity values or structural DTI-based tractography results revealed that key properties of brain network organization were essentially similar between 5-HTT(+/+) and 5-HTT(-/-) rats. The individual tests for differences between 5-HTT(+/+) and 5-HTT(-/-) rats were capable of detecting significant effects ranging from 5.8% (fractional anisotropy) to 26.1% (pharmacological MRI) and 29.3% (functional connectivity). Tentatively, lower fractional anisotropy in the genu of the corpus callosum could indicate a reduced capacity for information integration across hemispheres in 5-HTT(-/-) rats. Overall, the comparison of 5-HTT(-/-) and wild-type rats suggests mostly limited effects of 5-HTT genotype on MRI-based measures of brain morphology and function

    Expanding the Oxidative Chemistry of Organocopper Reagents: Facile Oxidative Cross-Coupling of Copper Acetylides with Arylboronic Acids

    No full text
    We have developed an efficient procedure for oxidative cross-coupling between arylboronic acids and alkynylcopper reagents. Upon simple addition of 1,10-phenanthroline in the presence of oxygen, these highly stable, readily available polymeric reagents are easily activated and transfer their alkynyl group after subsequent transmetallation with the boronic acid. These results further expand the oxidative chemistry of organocopper compounds together with providing a user-friendly entry to diaryl acetylenes.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore