41 research outputs found

    Elevated Cerebral Spinal Fluid Cytokine Levels in Boys with Cerebral Adrenoleukodystrophy Correlates with MRI Severity

    Get PDF
    Background: X-linked adrenoleukodystrophy (ALD) is a metabolic, peroxisomal disease that results from a mutation in the ABCD1 gene. The most severe course of ALD progression is the cerebral inflammatory and demyelinating form of the disease, cALD. To date there is very little information on the cytokine mediators in the cerebral spinal fluid (CSF) of these boys. Methodology/Principal Findings: Measurement of 23 different cytokines was performed on CSF and serum of boys with cerebral ALD and patients without ALD. Significant elevations in CSF IL-8 (29.362.2 vs 12.861.1 pg/ml, p = 0.0001), IL-1ra (166630 vs 8.666.5 pg/ml, p = 0.005), MCP-1 (610647 vs 328634 pg/ml, p = 0.002), and MIP-1b (14.261.3 vs 2.061.4 pg/ml, p,0.0001) were found in boys with cALD versus the control group. The only serum cytokine showing an elevation in the ALD group was SDF-1 (21246155 vs 11756125 pg/ml, p = 0.0001). The CSF cytokines of IL-8 and MCP-1b correlated with the Loes MRI severity score (p = 0.04 and p = 0.008 respectively), as well as the serum SDF-1 level (p = 0.002). Finally, CSF total protein was also significantly elevated in boys with cALD and correlated with both IL-8, MCP-1b (p = 0.0001 for both), as well as Loes MRI severity score (p = 0.0007). Conclusions/Significance: IL-8, IL-1ra, MCP-1, MIP-1b and CSF total protein were significantly elevated in patients with cALD; IL-8, MCP-1b, and CSF total protein levels correlated with disease severity determined by MRI. This is the largest repor

    Amplification of cox2 (∼620 bp) from 2 mg of Up to 129 Years Old Herbarium Specimens, Comparing 19 Extraction Methods and 15 Polymerases

    Get PDF
    During the past years an increasing number of studies have focussed on the use of herbarium specimens for molecular phylogenetic investigations and several comparative studies have been published. However, in the studies reported so far usually rather large amounts of material (typically around 100 mg) were sampled for DNA extraction. This equals an amount roughly equivalent to 8 cm2 of a medium thick leaf. For investigating the phylogeny of plant pathogens, such large amounts of tissue are usually not available or would irretrievably damage the specimens. Through systematic comparison of 19 DNA extraction protocols applied to only 2 mg of infected leaf tissue and testing 15 different DNA polymerases, we could successfully amplify a mitochondrial DNA region (cox2; ∼620 bp) from herbarium specimens well over a hundred years old. We conclude that DNA extraction and the choice of DNA polymerase are crucial factors for successful PCR amplification from small samples of historic herbarium specimens. Through a combination of suitable DNA extraction protocols and DNA polymerases, only a fraction of the preserved plant material commonly used is necessary for successful PCR amplification. This facilitates the potential use of a far larger number of preserved specimens for molecular phylogenetic investigation and provides access to a wealth of genetic information in preserved in specimens deposited in herbaria around the world without reducing their scientific or historical value

    Molecular Characterization of Podoviral Bacteriophages Virulent for Clostridium perfringens and Their Comparison with Members of the Picovirinae

    Get PDF
    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae

    What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

    Get PDF
    Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology

    Primary processes in sensory cells: current advances

    Get PDF
    corecore