91 research outputs found

    Ca2+ Permeable AMPA Receptor Induced Long-Term Potentiation Requires PI3/MAP Kinases but Not Ca/CaM-Dependent Kinase II

    Get PDF
    Ca2+ influx via GluR2-lacking Ca2+-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols, including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca2+ ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-AMPARs are important facilitators of synaptic plasticity in the brain

    The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity

    Get PDF
    The study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood. Accumulating evidence suggests that OD plasticity involves N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD). Here we report that the administration of a selective LTD antagonist prevented the ocular dominance shift during the critical period. The NMDAR co-agonist D-serine facilitated adult visual cortical LTD and the OD shift in short-term monocularly deprived (MD) adult mice. When combined with reverse suture, D-serine proved effective in restoring a contralaterally-dominated visual input pattern in long-term MD mice. This work suggests LTD as a key mechanism in both juvenile and adult ocular dominance plasticity, and D-serine as a potential therapeutic in human amblyopic subjects

    Human-Mediated Emergence as a Weed and Invasive Radiation in the Wild of the CD Genome Allotetraploid Rice Species (Oryza, Poaceae) in the Neotropics

    Get PDF
    BACKGROUND: The genus Oryza is being used as a model in plant genomic studies although there are several issues still to be resolved regarding the spatio-temporal evolution of this ancient genus. Particularly contentious is whether undated transoceanic natural dispersal or recent human interference has been the principal agent determining its present distribution and differentiation. In this context, we studied the origin and distribution history of the allotetraploid CD rice genome. It is endemic to the Neotropics but the genus is thought to have originated in the Paleotropics, and there is relatively little genetic divergence between some orthologous sequences of the C genome component and their Old World counterparts. METHODOLOGY/PRINCIPAL FINDINGS: Because of its allotetraploidy, there are several potential pitfalls in trying to date the formation of the CD genome using molecular data and this could lead to erroneous estimates. Therefore, we rather chose to rely on historical evidence to determine whether or not the CD genome was present in the Neotropics before the arrival of Columbus. We searched early collections of herbarium specimens and studied the reports of explorers of the tropical Americas for references to rice. In spite of numerous collectors traveling inland and collecting Oryza, plants determined as CD genome species were not observed away from cultivated rice fields until 1869. Various arguments suggest that they only consisted of weedy forms until that time. CONCLUSIONS/SIGNIFICANCE: The spatio-temporal distribution of herbarium collections fits a simple biogeographical scenario for the emergence in cultivated rice fields followed by radiation in the wild of the CD genome in the Neotropics during the last four centuries. This probably occurred from species introduced to the Americas by humans and we found no evidence that the CD genome pre-existed in the Old World. We therefore propose a new evolutionary hypothesis for such a recent origin of the CD genome. Moreover, we exemplify how an historical approach can provide potentially important information and help to disentangle the timing of evolutionary events in the history of the Oryza genomes

    The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors

    Get PDF
    The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Hippocampal synaptic plasticity, spatial memory and anxiety

    Full text link

    Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers

    Get PDF
    • …
    corecore