2 research outputs found

    Exergy performance of different space heating systems: A theoretical study

    Get PDF
    Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems, the effects offloor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans.The low temperature floor heating system performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied to the heat pump. The coefficient of performance (COP) of the heat pump has a critical value (2.57 in this study); it is beneficial to use a heat pump instead of a boiler only when the COP is above this critical value.The floor covering resistance should be kept to a minimum, in order not to hinder the performance of the floor heating and the whole system. The exergy input to auxiliary components plays a significant role in the overall exergy performance of systems, and its effects become even more significant for low temperature heating systems

    Beyond nearly-zero energy buildings: Experimental investigation of the thermal indoor environment and energy performance of a single-family house designed for plus-energy targets

    No full text
    A detached, one-story, single-family house in Denmark was operated with different heating and cooling strategies for 1 year. The strategies compared during the heating season were floor heating without ventilation, floor heating supplemented by warm air heating (ventilation system), and floor heating with heat recovery from exhaust air. During the cooling season, the house was cooled by floor cooling and was ventilated mechanically. Air and globe (operative, when applicable) temperatures at different heights at a central location were recorded. The thermal indoor environment, local thermal discomfort and overheating were evaluated based on EN 15251 (2007), EN ISO 7730 (2005), and DS 469 (2013), respectively. Energy performance was evaluated based on the energy production and HVAC system energy use. The thermal indoor environment during the heating season was satisfactory but it was not possible to reach the intended operative temperature when the outside temperatures were very low. During the cooling season, the cooling demand was high and overheating was a problem. Although the house was designed as a plus-energy house, it did not perform as one under the Danish climate conditions. It would be possible to decrease the heating and cooling demand during the design phase through careful consideration of parameters such as the orientation, glazing area, solar shading, and thermal mass. With a lower demand, plus-energy levels can be achieved even with the minimum contribution from the energy producing components
    corecore