Exergy performance of different space heating systems: A theoretical study - DTU Orbit (08/11/2017)

Exergy performance of different space heating systems: A theoretical study

Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems, the effects of

floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans.

The low temperature floor heating system performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied to the heat pump. The coefficient of performance (COP) of the heat pump has a critical value (2.57 in this study); it is beneficial to use a heat pump instead of a boiler only when the COP is above this critical value.

The floor covering resistance should be kept to a minimum, in order not to hinder the performance of the floor heating and the whole system. The exergy input to auxiliary components plays a significant role in the overall exergy performance of systems, and its effects become even more significant for low temperature heating systems.

General information

State: Published

Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Tokyo City University Authors: Kazanci, O. B. (Intern), Shukuya, M. (Ekstern), Olesen, B. W. (Intern)

Number of pages: 11 Pages: 119-129 Publication date: 2016 Main Research Area: Technical/natural sciences

Publication information

Journal: Building and Environment Volume: 99 ISSN (Print): 0360-1323 Ratings: BFI (2017): BFI-level 1 Web of Science (2017): Indexed yes BFI (2016): BFI-level 1 Scopus rating (2016): CiteScore 4.51 SJR 2.015 SNIP 2.198 Web of Science (2016): Indexed yes BFI (2015): BFI-level 1 Scopus rating (2015): SJR 2.093 SNIP 2.49 CiteScore 4.37 Web of Science (2015): Indexed yes BFI (2014): BFI-level 1 Scopus rating (2014): SJR 1.938 SNIP 2.797 CiteScore 4.14 Web of Science (2014): Indexed yes BFI (2013): BFI-level 1 Scopus rating (2013): SJR 1.581 SNIP 2.602 CiteScore 3.57 ISI indexed (2013): ISI indexed yes Web of Science (2013): Indexed yes BFI (2012): BFI-level 1 Scopus rating (2012): SJR 1.331 SNIP 2.875 CiteScore 3.06 ISI indexed (2012): ISI indexed yes Web of Science (2012): Indexed yes BFI (2011): BFI-level 1 Scopus rating (2011): SJR 1.144 SNIP 2.255 CiteScore 2.76 ISI indexed (2011): ISI indexed yes Web of Science (2011): Indexed yes BFI (2010): BFI-level 1 Scopus rating (2010): SJR 1.235 SNIP 2.001 Web of Science (2010): Indexed yes BFI (2009): BFI-level 1

Scopus rating (2009): SJR 1.028 SNIP 1.865 Web of Science (2009): Indexed yes BFI (2008): BFI-level 1 Scopus rating (2008): SJR 0.924 SNIP 1.38 Web of Science (2008): Indexed yes Scopus rating (2007): SJR 0.788 SNIP 1.778 Web of Science (2007): Indexed yes Scopus rating (2006): SJR 1.03 SNIP 1.63 Scopus rating (2005): SJR 0.955 SNIP 1.225 Web of Science (2005): Indexed yes Scopus rating (2004): SJR 0.548 SNIP 1.266 Scopus rating (2003): SJR 0.948 SNIP 0.921 Web of Science (2003): Indexed yes Scopus rating (2002): SJR 0.998 SNIP 1.39 Web of Science (2002): Indexed yes Scopus rating (2001): SJR 0.777 SNIP 1.098 Scopus rating (2000): SJR 0.526 SNIP 1.14 Scopus rating (1999): SJR 0.564 SNIP 1.175 Original language: English Floor heating, Floor covering resistance, Radiator heating, Warm-air heating, Boiler, Heat pump DOIs: 10.1016/j.buildenv.2016.01.025 Source: FindIt Source-ID: 2291704029 Publication: Research - peer-review > Journal article - Annual report year: 2016