138 research outputs found

    Direct Interactions in Relativistic Statistical Mechanics

    Get PDF
    Directly interacting particles are considered in the multitime formalism of predictive relativistic mechanics. When the equations of motion leave a phase-space volume invariant, it turns out that the phase average of any first integral, covariantly defined as a flux across a 7n7n-dimensional surface, is conserved. The Hamiltonian case is discussed, a class of simple models is exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page

    A Statistical Mechanical Problem in Schwarzschild Spacetime

    Full text link
    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.Comment: Corrected an equation misprint, added four references, and brief comments on the system's center of mass and the thermodynamic limi

    Playing with Fire. The Muslim Brotherhood and the Egyptian Leviathan

    Get PDF
    After the fall of Mubarak, the Muslim Brotherhood decided to act as a stabilising force, to abandon the street and to lend democratic legitimacy to the political process designed by the army. The outcome of this strategy was that the MB was first ‘burned’ politically and then harshly repressed after having exhausted its stabilising role. The main mistakes the Brothers made were, first, to turn their back on several opportunities to spearhead the revolt by leading popular forces and, second, to keep their strategy for change gradualist and conservative, seeking compromises with parts of the former regime even though the turmoil and expectations in the country required a much bolder strategy

    Jamming non-local quantum correlations

    Get PDF
    We present a possible scheme to tamper with non-local quantum correlations in a way that is consistent with relativistic causality, but goes beyond quantum mechanics. A non-local ``jamming" mechanism, operating within a certain space-time window, would not violate relativistic causality and would not lead to contradictory causal loops. The results presented in this Letter do not depend on any model of how quantum correlations arise and apply to any jamming mechanism.Comment: 10 pp, LaTe

    Interpretation of the evolution parameter of the Feynman parametrization of the Dirac equation

    Get PDF
    The Feynman parametrization of the Dirac equation is considered in order to obtain an indefinite mass formulation of relativistic quantum mechanics. It is shown that the parameter that labels the evolution is related to the proper time. The Stueckelberg interpretation of antiparticles naturally arises from the formalism.Comment: 6 pages, RevTex, no figures, submitted to Phys. Lett.

    Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments

    Full text link
    A large number of treatments of the meson spectrum have been tried that consider mesons as quark - anti quark bound states. Recently, we used relativistic quantum "constraint" mechanics to introduce a fully covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure functions as a "quantum mechanical transform of Bethe-Salpeter equation". Here, we test its spectral fits against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and the popular semi-relativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and does so with the smallest number of interaction functions without additional cutoff parameters necessary to make other approaches numerically tractable. We discuss the distinguishing features of our model that may account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings that are crucial for its success when solved nonperturbatively for the analogous two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content
    • 

    corecore