60 research outputs found

    One-pot synthesis of silica monoliths with hierarchically porous structure

    Get PDF
    Poly(furfuryl alcohol) (PFA) and block copolymer Pluronic F127 were used as pore templates to create mechanically robust silica monoliths with a hierarchical and interconnected macro?mesoporous network in an easy, reproducible bimodal scale templating process. Control over the morphology was obtained by varying the reactant ratios. Phase separation on the submicrometer scale occurred when furfuryl alcohol was cationically polymerized and therefore became immiscible with the solvent and the silica precursor. Upon a subsequent sol?gel reaction, a silica-F127 matrix formed around the PFA spheres, leading to macropore structures with mesoporous walls. Surface areas of the final structures ranged from 500 to 989 m2/g and a maximum pore volume of 4.5 mL/g was achieved. Under mildly acidic conditions, micelle-templated mesopores resulted. Interconnected macropores could be obtained by increasing the pH or the block copolymer concentration. The formation mechanism and the relationship between PFA, Pluronic F127 and acidity are discussed in detail.Fil: Drisko, Glenna L.. University of Melbourne; AustraliaFil: Zelcer, Andrés. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caruso, Rachel A.. University of Melbourne; AustraliaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin

    One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity

    Get PDF
    Hierarchically porous oxides are used in a variety of applications within the energy sector (e.g., fuel cells, batteries), biology (e.g., scaffolds, biocatalysis), separations, and catalysis. This article describes a reproducible one-step method for the preparation of metal oxides with controllable hierarchical pore architectures. The preparation is demonstrated for a wide range of materials, specifically silica, titania, zirconia, aluminum titanium oxide, titanium zirconium oxide, and yttrium zirconium oxide monoliths. The samples were prepared by exploiting the polymerization and phase separation of furfuryl alcohol to produce a colloidal dispersion of poly(furfuryl alcohol) particles. The gelation in the sol-gel process occurred after the in situ formation of the template. The removal of the polymer template led to the formation of macropores, whereas inclusion of an amphiphilic block copolymer (Pluronic F127) assisted mesopore formation, either by templating or by stabilizing the inorganic building blocks. The macropore and mesopore morphology could be altered by varying the synthesis conditions. This control over the pore structure was demonstrated in the silica, titania, and titanium zirconium oxide materials.Fil: Drisko, Glenna L.. University of Melbourne; AustraliaFil: Zelcer, Andrés. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Luca, Vittorio. Comisión Nacional de Energía Atómica; ArgentinaFil: Caruso, Rachel A.. University of Melbourne; AustraliaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Synthesis and photocatalytic activity of titania monoliths prepared with controlled macro- and mesopore structure

    Get PDF
    Herein, we report a one-pot synthesis of crack-free titania monoliths with hierarchical macro-mesoporosity and crystalline anatase walls. Bimodal macroporosity is created through the polymer-induced phase separation of poly(furfuryl alcohol). The cationic polymerization of furfuryl alcohol is performed in situ and subsequently the polymer becomes immiscible with the aqueous phase, which includes titanic acid. Addition of template, Pluronic F127, increases the mesopore volume and diameter of the resulting titania, as the poly(ethylene glycol) block interacts with the titania precursor, leading to assisted assembly of the metal oxide framework. The hydrophobic poly(propylene glycol) micelle core could itself be swollen with monomeric and oligomeric furfuryl alcohol, allowing for mesopores as large as 18 nm. Variations in synthesis parameters affect porosity; for instance furfuryl alcohol content changes the size and texture of the macropores, water content changes the grain size of the titania and Pluronic F127 content changes the size and volume of the mesopore. Morphological manipulation improves the photocatalytic degradation of methylene blue. Light can penetrate several millimeters into the porous monolith, giving these materials possible application in commercial devices.Fil: Drisko, Glenna L.. University of Melbourne; AustraliaFil: Zelcer, Andrés. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Wang, Xingdong. Commonwealth Scientific And Industrial Research Organization; AustraliaFil: Caruso, Rachel A.. School Of Chemistry; Australia. Commonwealth Scientific And Industrial Research Organization; AustraliaFil: Soler Illia, Galo Juan de Avila Arturo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Synthesis and electrical characterization of monocrystalline nickel nanorods and Ni-CNT composites

    Get PDF
    Aerospace vessels require electrically conductive, light weight frames to minimize damage from electromagnetic radiation, electrostatic discharge and lightning strikes while economizing fuel. Nickel nanowires and hybrid nickel-carbon nanotube materials are suitable nanostructures to ensure high conductivity at low mass loading. Monocrystalline nickel structures have even better conduction properties than the polycrystalline equivalent due to possessing less particle-particle junctions. We have developed a solutionbased method that produces monocrystalline nickel nanowires via the decomposition of metalorganic precursors in the presence of self-assembled surfactants. The resulting wires are approximately 20 nm wide by 1.5 µm in length. These wires have a morphology consisting of semi-flattened rods with pyramidal ends. Despite the changing dimensions between the nanorod body and its head, there was no disruption in the crystallographic orientation, as observed with HRTEM and diffraction patterns. The nickel nanostructures were exposed to air for several weeks, but no oxidation was detectable by magnetic measurement, i.e. the saturation magnetization corresponds to Ni0 and no bias is observed in the hysteresis loops. It seems that the long alkyl chain amine surfactant, in addition to being a structuration agent, remains at the surface of the Ni wires after washing and acts as a protective layer. The magnetic field around Ni nanowires was imaged using electron holography. Each Ni wire is a magnetic monodomain. Routes to prepare hybrid nickel-CNT materials were explored using chemical vapor deposition in a fluidized bed, solution chemistry and dry preparation in a Fisher-Porter reactor. Different nickel compositions and material morphologies resulted, depending on the preparation technique. The nickel nanorods and hybrid materials were incorporated into carbon fiber-reinforced polymer composites. The electrical conductivity as a function of wt% loading was measured, showing promise for these materials in discharging electrostatic charges

    Gold functionalized zeolitic imidazolate frameworks

    No full text

    Silicon particle synthesis and 2D assemby

    No full text

    Metal-induced crystallization of SiO2 and TiO2

    No full text
    • …
    corecore