40 research outputs found

    Emergence of Tuning to Natural Stimulus Statistics along the Central Auditory Pathway

    Get PDF
    We have previously shown that neurons in primary auditory cortex (A1) of anaesthetized (ketamine/medetomidine) ferrets respond more strongly and reliably to dynamic stimuli whose statistics follow "natural" 1/f dynamics than to stimuli exhibiting pitch and amplitude modulations that are faster (1/f(0.5)) or slower (1/f(2)) than 1/f. To investigate where along the central auditory pathway this 1/f-modulation tuning arises, we have now characterized responses of neurons in the central nucleus of the inferior colliculus (ICC) and the ventral division of the mediate geniculate nucleus of the thalamus (MGV) to 1/f(gamma) distributed stimuli with gamma varying between 0.5 and 2.8. We found that, while the great majority of neurons recorded from the ICC showed a strong preference for the most rapidly varying (1/f(0.5) distributed) stimuli, responses from MGV neurons did not exhibit marked or systematic preferences for any particular gamma exponent. Only in A1 did a majority of neurons respond with higher firing rates to stimuli in which gamma takes values near 1. These results indicate that 1/f tuning emerges at forebrain levels of the ascending auditory pathway

    Broadened Population-Level Frequency Tuning in Human Auditory Cortex of Portable Music Player Users

    Get PDF
    Nowadays, many people use portable players to enrich their daily life with enjoyable music. However, in noisy environments, the player volume is often set to extremely high levels in order to drown out the intense ambient noise and satisfy the appetite for music. Extensive and inappropriate usage of portable music players might cause subtle damages in the auditory system, which are not behaviorally detectable in an early stage of the hearing impairment progress. Here, by means of magnetoencephalography, we objectively examined detrimental effects of portable music player misusage on the population-level frequency tuning in the human auditory cortex. We compared two groups of young people: one group had listened to music with portable music players intensively for a long period of time, while the other group had not. Both groups performed equally and normally in standard audiological examinations (pure tone audiogram, speech test, and hearing-in-noise test). However, the objective magnetoencephalographic data demonstrated that the population-level frequency tuning in the auditory cortex of the portable music player users was significantly broadened compared to the non-users, when attention was distracted from the auditory modality; this group difference vanished when attention was directed to the auditory modality. Our conclusion is that extensive and inadequate usage of portable music players could cause subtle damages, which standard behavioral audiometric measures fail to detect in an early stage. However, these damages could lead to future irreversible hearing disorders, which would have a huge negative impact on the quality of life of those affected, and the society as a whole

    Association between auditory and visual symptoms of unilateral spatial neglect

    No full text
    Unilateral spatial neglect due to right brain damage (RBD) can occur in several different sensory modalities in the same patient. Previous studies of the association between auditory and visual neglect have yielded conflicting outcomes. Most such studies have compared performance on relatively simple clinical measures of visual neglect, such as target cancellation, with that on more sophisticated measures of auditory perception. This is problematic because such tasks are typically not matched for the cognitive processes they exercise. We overcame this limitation by using equivalent visual and auditory versions of extinction and temporal-order judgment (TOJ) tasks. RBD patients demonstrated lateralized deficits on both visual and auditory tasks when compared with same-aged, healthy controls. Critically, a significant association between the severity of visual and auditory deficits was apparent on the TOJ task but not the extinction task, suggesting that even when task demands are matched across modalities, dissociations between visual and auditory neglect can be apparent. Across the auditory tasks, patients showed more pronounced deficits for verbal stimuli than for non-verbal stimuli. These findings have implications for recent models proposed to explain the role of spatial attention in multimodal perception. (c) 2007 Elsevier Ltd. All rights reserved

    Responses of neurons in the inferior colliculus of the rat to interaural time and intensity differences in transient stimuli: Implications for the latency hypothesis

    No full text
    Although the sensitivity to interaural intensity differences (IIDs) of neurons receiving excitatory - inhibitory binaural input (EI neurons) has been examined in numerous studies, the mechanisms underlying this sensitivity remain unclear. According to the 'latency hypothesis', neuronal sensitivity to IIDs reflects sensitivity to differences in the timing of ipsilateraI and contralateral inputs that are produced as a consequence of the effects of intensity upon latency. If the latency hypothesis is correct, a neuron's responses over any given IID range should be predicted by its responses to the interauraI time differences (ITDs) that are 'equivalent' to the IIDs tested, in the sense that they produce the same changes in the relative timing of inputs. This prediction from the latency hypothesis was examined by determining the sensitivity of ET neurons in the inferior colliculus of anesthetized rats to IIDs and ITDs in click stimuli, under conditions that allowed 'equivalent' ITDs to be estimated. In approximately 10% of the 41 neurons tested, the IID-sensitivity function was a perfect or near-perfect match to the equivalent-ITD function, indicating that IID sensitivity could be entirely accounted for in terms of sensitivity to intensity-produced neural time differences, as asserted by the latency hypothesis. For the majority of neurons, however, sensitivity to equivalent ITDs accounted only partially for the characteristics of the IID-sensitivity function; other features of the function in these cases appeared to reflect the operation of an additional factor, most probably the relative magnitude of the inputs from the two ears. Although the conclusions are qualified by the fact that one of the assumptions on which the estimation of equivalent ITDs was based was probably not satisfied for some neurons, the results suggest that intensity-produced changes in both the magnitude and the timing of excitatory and inhibitory inputs shape the IID sensitivity of most EI neurons

    Effects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats

    Get PDF
    Full text Embargoed until: 2015-03-01Extended periods of deafness have profound effects on central auditory system function and organization. Neonatal deafening results in loss of the normal cochleotopic organization of the primary auditory cortex (AI), but environmentally-derived intracochlear electrical stimulation, via a cochlear implant, initiated shortly after deafening, can prevent this loss. We investigated whether such stimulation initiated after an extended period of deafness can restore cochleotopy. In two groups of neonatally-deafened cats, a multi-channel intracochlear electrode array was implanted at 8 weeks of age. One group received only minimal stimulation, associated with brief recordings at 4-6-week intervals, over the following 6 months to check the efficacy of the implant. In the other group, this 6-month period was followed by 6 months of near-continuous intracochlear electrical stimulation from a modified clinical cochlear implant system. We recorded multi-unit clusters in the auditory cortex and used two different methods to define the region of interest in the putative AI. There was no evidence of cochleotopy in any of the minimally stimulated animals, confirming our earlier finding. In three of six chronically stimulated cats there was clear evidence of AI cochleotopy, and in a fourth cat in which the majority of penetrations were in the anterior auditory field there was clear evidence of cochleotopy in that field. The finding that chronic intracochlear electrical stimulation after an extended period of deafness is able to restore cochleotopy in some (but not all) cases has implications for the performance of patients implanted after an extended period of deafness

    Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex

    Get PDF
    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees

    Early and rapid perceptual learning

    No full text
    Major, rapid performance improvements in perceptual training are often dismissed as 'task' or 'procedural' learning because they are fast and generalize within a task. We assessed the contributions of perceptual and procedural learning to improvement in an auditory tone frequency learning task in humans and found that perceptual learning accounted for between 76% and 98% of the rapid early performance improvemen
    corecore