16,535 research outputs found

    Survey of FRC recovery research

    Get PDF

    Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco

    Get PDF
    The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blue-shifted emission lines. Here we investigate the origin of these asymmetries through three-dimensional hydrodynamic simulations describing the outburst during the first 20 days of evolution. The model takes into account thermal conduction and radiative cooling and assumes a blast wave propagates through an equatorial density enhancement. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and the ejecta distribution are efficiently collimated in polar directions due to the presence of the equatorial density enhancement. The majority of the X-ray emission originates from the interaction of the blast with the equatorial density enhancement and is concentrated on the equatorial plane as a ring-like structure. Our "best-fit" model requires a mass of ejecta in the outburst Mej≈3×10−7 M⊙M_{ej} \approx 3\times 10^{-7}\,M_{\odot} and an explosion energy Eb≈3×1043E_b \approx 3 \times 10^{43} erg and reproduces the distribution of emission measure vs temperature and the evolution of shock velocity and temperature inferred from the observations. The model predicts asymmetric and blue-shifted line profiles similar to those observed and explains their origin as due to substantial X-ray absorption of red-shifted emission by ejecta material. The comparison of predicted and observed Ne and O spectral line ratios reveals no signs of strong Ne enhancement and suggests the progenitor is a CO white dwarf.Comment: 16 pages, 17 Figures; accepted for publication on MNRA

    An Algorithm for constructing Hjelmslev planes

    Get PDF
    Projective Hjelmslev planes and Affine Hjelmselv planes are generalisations of projective planes and affine planes. We present an algorithm for constructing a projective Hjelmslev planes and affine Hjelsmelv planes using projective planes, affine planes and orthogonal arrays. We show that all 2-uniform projective Hjelmslev planes, and all 2-uniform affine Hjelsmelv planes can be constructed in this way. As a corollary it is shown that all 2-uniform Affine Hjelmselv planes are sub-geometries of 2-uniform projective Hjelmselv planes.Comment: 15 pages. Algebraic Design Theory and Hadamard matrices, 2014, Springer Proceedings in Mathematics & Statistics 13

    Coronal Electron Confinement by Double Layers

    Full text link
    In observations of flare-heated electrons in the solar corona, a longstanding problem is the unexplained prolonged lifetime of the electrons compared to their transit time across the source. This suggests confinement. Recent particle-in-cell (PIC) simulations, which explored the transport of pre-accelerated hot electrons through ambient cold plasma, showed that the formation of a highly localized electrostatic potential drop, in the form of a double layer (DL), significantly inhibited the transport of hot electrons (T.C. Li, J.F. Drake, and M. Swisdak, 2012, ApJ, 757, 20). The effectiveness of confinement by a DL is linked to the strength of the DL as defined by its potential drop. In this work, we investigate the scaling of the DL strength with the hot electron temperature by PIC simulations, and find a linear scaling. We demonstrate that the strength is limited by the formation of parallel shocks. Based on this, we analytically determine the maximum DL strength, and find also a linear scaling with the hot electron temperature. The DL strength obtained from the analytic calculation is comparable to that from the simulations. At the maximum strength, the DL is capable of confining a significant fraction of hot electrons in the source
    • …
    corecore