18 research outputs found

    Single input fuzzy logic controller for unmanned underwater vehicle

    Get PDF
    This paper describes a control scheme that provides an efficient way to design a Fuzzy Logic Controller (FLC) for the unmanned underwater vehicle (UUV). The proposed method, known as the Single Input Fuzzy Logic Controller (SIFLC), reduces the conventional two-input FLC (CFLC) to a single input single output (SISO) controller. The SIFLC offers significant reduction in rule inferences and simplify the tuning of control parameters. Practically it can be easily implemented by a look-up table using a low cost microprocessor due its piecewise linear control surface. To verify its effectiveness, the control algorithm is simulated using the Marine Systems Simulator (MSS) on the Matlab/Simulink® platform. The result indicates that both the SIFLC and CFLC give identical response to the same input sets. However SIFLC requires very minimum tuning effort and its execution time is in the orders of two magnitudes less than CFLC

    On Modeling and Adaptive Control of Underwater Robots

    No full text

    ROVs and AUVs

    No full text
    The most significant breakthroughs in science are often made as a result of technological developments and innovation. A new capacity to gather more data, measure more precisely or make entirely new observations generally leads to new insights and fundamental understanding. The future of ocean research and exploration therefore lies in robotics: marine robotic systems can be deployed at depths and in environments that are out of direct reach for humans, they can work around the clock, and they can be autonomous, freeing up time and money for other activities. To advance the field of submarine geomorphology, the two types of robots that currently make the biggest difference are Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). Other autonomous or robotic systems are available for marine research (e.g. gliders, autonomous surface vehicles, benthic crawlers etc.), but their application for geomorphological studies is less extensive. This chapter gives an overview of the main characteristics of ROVs and AUVs, their advantages and disadvantages, and their main applications for geomorphological research. In comparison to the other geomorphological methods discussed in this book, however, it has to be made clear that ROVs and AUVs are not so much methods per se, instead they are platforms from which existing and new approaches can be applied

    Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean

    Get PDF
    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m?2), followed by a peltospiroid gastropod (>1,500 individuals m?2), eolepadid barnacle (>1,500 individuals m?2), and carnivorous actinostolid anemone (>30 individuals m?2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in ?34S values of primary consumers with distance from vent sources, and variation in their ?13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents
    corecore