10 research outputs found

    Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes

    Get PDF
    Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin–orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin–orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin–orbit coupled states, and show measurement of UV···UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field

    Complete Active Space Wavefunction-Based Analysis of Magnetization and Electronic Structure

    No full text
    International audienceA theoretical framework for the generation of natural orbitals, naturalspin orbitals, as well as orbital- and spin-magnetizations from multi-configurationalab-initio wavefunction calculations including spin-orbit coupling is presented. It isshown how these computational orbital and magnetization tools can be used to inter-pret and rationalize the magnetic properties of selected complexes containing tran-sition metals, lanthanides, and actinides

    The role of uranium–arene bonding in H2O reduction catalysis

    No full text
    International audienceThe reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H-2 from H2O. Here, we present the precise role of uranium-arene delta bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in d bonding. The redox activity of the arene anchor and a covalent delta-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts
    corecore