11 research outputs found

    Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus

    Get PDF
    The tissue-specific translation elongation factor eEF1A2 is a potential oncogene that is overexpressed in human ovarian cancer. eEF1A2 is highly similar (98%) to the near-ubiquitously expressed eEF1A1 (formerly known as EF1-α) making analysis with commercial antibodies difficult. We wanted to establish the expression pattern of eEF1A2 in ovarian cancer of defined histological subtypes at both the RNA and protein level, and to establish the mechanism for the overexpression of eEF1A2 in tumours. We show that while overexpression of eEF1A2 is seen at both the RNA and protein level in up to 75% of clear cell carcinomas, it occurs at a lower frequency in other histological subtypes. The copy number at the EEF1A2 locus does not correlate with expression level of the gene, no functional mutations were found, and the gene is unmethylated in both normal and tumour DNA, showing that overexpression is not dependent on genetic or epigenetic modifications at the EEF1A2 locus. We suggest that the cause of overexpression of eEF1A2 may be the inappropriate expression of a trans-acting factor. The oncogenicity of eEF1A2 may be related either to its role in protein synthesis or to potential non-canonical functions

    Robust physical methods that enrich genomic regions identical by descent for linkage studies: confirmation of a locus for osteogenesis imperfecta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The monogenic disease osteogenesis imperfecta (OI) is due to single mutations in either of the collagen genes ColA1 or ColA2, but within the same family a given mutation is accompanied by a wide range of disease severity. Although this phenotypic variability implies the existence of modifier gene variants, genome wide scanning of DNA from OI patients has not been reported. Promising genome wide marker-independent physical methods for identifying disease-related loci have lacked robustness for widespread applicability. Therefore we sought to improve these methods and demonstrate their performance to identify known and novel loci relevant to OI.</p> <p>Results</p> <p>We have improved methods for enriching regions of identity-by-descent (IBD) shared between related, afflicted individuals. The extent of enrichment exceeds 10- to 50-fold for some loci. The efficiency of the new process is shown by confirmation of the identification of the Col1A2 locus in osteogenesis imperfecta patients from Amish families. Moreover the analysis revealed additional candidate linkage loci that may harbour modifier genes for OI; a locus on chromosome 1q includes COX-2, a gene implicated in osteogenesis.</p> <p>Conclusion</p> <p>Technology for physical enrichment of IBD loci is now robust and applicable for finding genes for monogenic diseases and genes for complex diseases. The data support the further investigation of genetic loci other than collagen gene loci to identify genes affecting the clinical expression of osteogenesis imperfecta. The discrimination of IBD mapping will be enhanced when the IBD enrichment procedure is coupled with deep resequencing.</p

    Panx3 links body mass index and tumorigenesis in a genetically heterogeneous mouse model of carcinogen-induced cancer

    No full text
    BACKGROUND: Body mass index (BMI) has been implicated as a primary factor influencing cancer development. However, understanding the relationship between these two complex traits has been confounded by both environmental and genetic heterogeneity. METHODS: In order to gain insight into the genetic factors linking BMI and cancer, we performed chemical carcinogenesis on a genetically heterogeneous cohort of interspecific backcross mice ((Mus Spretus × FVB/N) F1 × FVB/N). Using this cohort, we performed quantitative trait loci (QTL) analysis to identify regions linked to BMI. We then performed an integrated analysis incorporating gene expression, sequence comparison between strains, and gene expression network analysis to identify candidate genes influencing both tumor development and BMI. RESULTS: Analysis of QTL linked to tumorigenesis and BMI identified several loci associated with both phenotypes. Exploring these loci in greater detail revealed a novel relationship between the Pannexin 3 gene (Panx3) and both BMI and tumorigenesis. Panx3 is positively associated with BMI and is strongly tied to a lipid metabolism gene expression network. Pre-treatment Panx3 gene expression levels in normal skin are associated with tumor susceptibility and inhibition of Panx function strongly influences inflammation. CONCLUSIONS: These studies have identified several genetic loci that influence both BMI and carcinogenesis and implicate Panx3 as a candidate gene that links these phenotypes through its effects on inflammation and lipid metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0334-8) contains supplementary material, which is available to authorized users
    corecore