10 research outputs found

    The filament-forming protein Pil1 assembles linear eisosomes in fission yeast

    Get PDF
    Eisosomes generate spatial domains in the plasma membrane of yeast cells. The core eisosome protein Pil1 is shown to form filaments in vitro and in cells. Pil1 filaments are stable at the cell cortex, and cytoplasmic Pil1 filament rods appear upon overexpression. This shows a role for self-assembly in organizing cortical domains

    Problems and solutions in machining of titanium alloys

    No full text
    Titanium alloys are known as difficult-to-machine materials. The problems of machining titanium are many folds which depend on types of titanium alloys. This paper investigates the underlying mechanisms of basic challenges, such as variation of chip thickness, high heat stress, high pressure loads, springback, and residual stress based on the available literature. These are responsible for higher tool wear and worse machined surface integrity. In addition, many cutting tool materials are inapt for machining titanium alloys as those materials are chemically reactive to titanium alloys under machining conditions. To address these problems, latest techniques such as application of high pressure coolant, cryogenic cooling, tap testing, thermally enhanced machining, hybrid machining, and use of high conductive cutting tool and tool holder have also been discussed and correlated. It seems that all the solutions are not yet well accepted in the industrial domain; further advancement in those fields are required to reduce the machining cost of titanium alloys

    Algorithmic approaches to protein-protein interaction site prediction

    No full text
    corecore