21 research outputs found

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC

    Biodegradability of Carbon Nano-Onions by Human Myeloperoxidase and the Photo-Fenton Reaction

    No full text
    The biodegradability of graphene family materials (GFMs) in the environment and organisms is little understood to estimate their fate and possible byproducts. Herein, for the first time, we explored the biodegradability of multilayer fullerenes or carbon nano-onions (CNOs) by treating with human myeloperoxidase (hMPO) isolated from the neutrophils and plant enzyme horseradish peroxidase (HRP) and photo-Fenton (PF) reaction under UV-light irradiation. High-resolution electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and Mass spectrometry results confirmed that CNOs are not biopersistent. These results will be useful in understanding the fate of CNOs and designing their biomedical applications

    Bax expression measured by AQUAnalysis is an independent prognostic marker in oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to apoptosis is a hallmark of cancer and proteins regulating apoptosis have been proposed as prognostic markers in several malignancies. However, the prognostic impact of apoptotic markers has not been consistently demonstrated in oral squamous cell carcinoma (OSCC). This inconsistency in reported associations between apoptotic proteins and prognosis can be partly attributed to the intrinsic low resolution and misclassification associated with manual, semi-quantitative methods of biomarker expression measurement. The aim of this study was to examine the association between apoptosis-regulating proteins and clinical outcomes in oral squamous cell carcinoma (OSCC) using the quantitative fluorescence immunohistochemistry (IHC) based AQUAnalysis technique.</p> <p>Methods</p> <p>Sixty-nine OSCC patients diagnosed between 1998–2005 in Calgary, Alberta, Canada were included in the study. Clinical data were obtained from the Alberta Cancer Registry and chart review. Tissue microarrays (TMAs) were assembled from triplicate cores of formalin-fixed paraffin embedded pre-treatment tumour tissue. Bax, Bcl-2 and Bcl-XL protein expression was quantified using fluorescent IHC and AQUA technology in normal oral cavity squamous epithelium (OCSE) and OSCC tumour samples. Survival was analyzed using Kaplan-Meier plots and the Cox proportional hazard model.</p> <p>Results</p> <p>Bax expression was predominantly nuclear in OCSE and almost exclusively cytoplasmic in OSCC. No similar differences in localization were observed for Bcl-2 or Bcl-XL. Only Bax expression associated with disease-specific survival (DSS), with 5-year survival estimates of 85.7% for high Bax versus 50.3% for low Bax (p = 0.006), in univariate analysis. High Bax expression was also significantly associated with elevated Ki67 expression, indicating that increased proliferation might lead to an improved response to radiotherapy in patients with elevated Bax expression. In multivariate analyses, Bax protein expression remained an independent predictor of DSS in OSCC [HR 0.241 (0.078-0.745), p = 0.013].</p> <p>Conclusions</p> <p>The AQUA technique used in our study eliminates observer bias and provides reliable and reproducible estimates for biomarker expression. AQUA also provides essential measures of quality control that cannot be achieved with manual biomarker scoring techniques. Our results support the use of Bax protein expression as a prognostic marker in conjunction with other clinico-pathological variables when designing personalized treatment strategies for OSCC patients.</p
    corecore