1,709 research outputs found

    Acetone in the Atmosphere of Hong Kong, Abundance, Sources and Photochemical Precursors

    Get PDF
    Intensive field measurements were carried out at a mountain site and an urban site at the foot of the mountain from September to November 2010 in Hong Kong. Acetone was monitored using both canister air samples and 2,4-dinitrophenylhydrazine cartridges. The spatiotemporal patterns of acetone showed no difference between the two sites (p > 0.05), and the mean acetone mixing ratios on O3 episode days were higher than those on non-O3 episode days at both sites (p < 0.05). The source contributions to ambient acetone at both sites were estimated using a receptor model i.e. Positive Matrix Factorization (PMF). The PMF results showed that vehicular emission and secondary formation made the most important contribution to ambient acetone, followed by the solvent use at both sites. However, the contribution of biogenic emission at the mountain site was significantly higher than that at the urban site, whereas biomass burning made more remarkable contribution at the urban site than that at the mountain site. The mechanism of oxidation formation of acetone was investigated using a photochemical box model. The results indicated that i-butene was the main precursor of secondary acetone at the mountain site, while the oxidation of i-butane was the major source of secondary acetone at the urban site.Department of Civil and Environmental Engineerin

    Emissions of Volatile Organic Compounds Inferred From Airborne Flux Measurements over a Megacity

    Get PDF
    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m<sup>2</sup>/h and 4.7±2.3 mg/m<sup>2</sup>/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m<sup>2</sup>/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g) including the International airport (e.g. 3–5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH<sub>3</sub>CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%)

    The subtropical global plume in the Pacific Exploratory Mission-Tropics A (PEM-Tropics A), PEM-Tropics B, and the Global Atmospheric Sampling Program (GASP): How tropical emissions affect the remote Pacific

    Get PDF
    [1] An extended southern subtropical plume of CO meanders>15,000 km around the world, gradually spreading around 20 S. This southern pollution plume is most noticeable in the burning season, southern spring; a similar subtropical plume appears in the northern spring. We use tracer maps to guide the use of trajectories to trace observations of the plume to their origins. The MM5 mesoscale model provides high-resolution, near-global synoptic reconstructions of the weather. Two situations are analyzed: NASA’s airborne Pacific Exploratory Mission-Tropics A (PEM-Tropics A) period, September–October 1996 and the PEM-Tropics B period, March–April 1999. Similar features are noted for a much earlier mission in 1977, which apparently captured the first, but never-recognized, samples of the global pollution of the Southern Hemisphere. For PEM-Tropics A, near-source pieces of the plume are clearly seen in the Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product and are well simulated. Downwind, the aircraft sampling of several strands deriving from a single plume seems representative and well simulated. A general mechanism of the plume emerges: The southern plume arises in surface accumulation regions in Africa and Sout
    corecore