78 research outputs found

    Design and Characterization of Cyclosporine A-Loaded Nanofibers for Enhanced Drug Dissolution

    Get PDF
    Despite widespread use as an immunosuppressant, the therapeutic efficacy of the undecapeptide cyclosporine A (CyA) is compromised when given by the oral route because of the innate hydrophobicity of the drug molecule, potentially leading to poor aqueous solubility and bioavailability. The aim of this study was to develop and characterize nanofibers based on the water-miscible polymer polyvinylpyrrolidone (PVP), incorporating CyA preloaded into polymeric surfactants so as to promote micelle formation on hydration; therefore, this approach represents the novel combination of three dissolution enhancement methodologies, namely solid dispersion technology, micellar systems, and nanofibers with enhanced surface area. The preparation of the nanofibers was performed in two steps. First, mixed micelles composed of the water-soluble vitamin E derivative d-α-tocopheryl poly(ethylene glycol) 1000 succinate and the amphiphilic triblock polymer Pluronic F127 (Poloxamer 407) were prepared. The micelles were characterized in terms of size, surface charge, drug loading, and encapsulation efficiency using transmission electron microscopy, dynamic light scattering, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and scanning electron and atomic force microscopy analysis. Nanofibers composed of PVP and the drug-loaded surfactant system were then prepared via electrospinning, with accompanying thermal, spectroscopic, and surface topological analysis. Dissolution studies indicated an extremely rapid dissolution profile for the fibers compared to the drug alone, while wettability studies also indicated a marked decrease in contact angle compared to the drug alone. Overall, the new approach appears to offer a viable means for considerably improving the dissolution of the hydrophobic peptide CyA, with associated implications for improved oral bioavailability

    Access routes, devices and guidance methods for intrapericardial delivery in cardiac conditions

    Get PDF
    Drug deposition into the intrapericardial space is favourable for achieving localised effects and targeted cardiac delivery owing to its proximity to the myocardium as well as facilitating optimised pharmacokinetic profiles and a reduction in systemic side effects. Access to the pericardium requires invasive procedures but the risks associated with this have been reduced with technological advances, such as combining transatrial and subxiphoid access with different guidance methods. A variety of introducer devices, ranging from needles to loop-catheters, have also been developed and validated in pre-clinical studies investigating intrapericardial delivery of therapeutic agents. Access techniques are generally well-tolerated, self-limiting and safe, although some rare complications associated with certain approaches have been reported. This review covers these access techniques and how they have been applied to the delivery of drugs, cells, and biologicals, demonstrating the potential of intrapericardial delivery for treatments in cardiac arrhythmia, vascular damage, and myocardial infarction

    Monitoring film coalescence from aqueous polymeric dispersions using atomic force microscopy: Surface topographic and nano-adhesion studies

    Get PDF
    The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy (AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion (Eudragit®NE30D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols

    Development and Evaluation of Feline Tailored Amlodipine Besylate Mini-Tablets Using l-lysine as a Candidate Flavouring Agent

    Get PDF
    Felines may find orally administered medicines unpalatable, thus presenting a problem in the treatment of chronic conditions such as hypertension, a commonly diagnosed condition in felines requiring daily administration of medication. A pertinent example is amlodipine besylate, formulations of which are known to be poorly tolerated by cats. There is therefore a need to develop feline-specific delivery approaches that are both simple to administer and mask the taste of the drug, thereby enhancing the owner's commitment to treatment and the associated therapeutic outcome for the companion animal. In addition, it is helpful to develop accessible and reproducible means of assessing taste for pre-clinical selection, hence the use of recently developed taste biosensor systems for veterinary applications is an area of interest. This study focuses on developing feline-specific amlodipine besylate formulations by improving the taste using a suitable flavouring agent while reducing dosage form size to a 2 mm diameter mini-tablet. The choice of L-lysine as a flavouring agent was based on the dietary and taste preference of cats. The impact of L-lysine on the taste perception of the formulation was evaluated using a biosensor system (E-tongue) fitted with sensors sensitive to bitter tastes. The results showed L-lysine successfully masked bitterness, while the drug release studies suggest that it has no impact on drug dissolution. In addition, tableting parameters such as tablet mass uniformity, content uniformity, tablet diameter, thickness and hardness were all satisfactory. The present study suggests that amlodipine besylate mini-tablets containing L-lysine could improve the palatability and in turn support product acceptability and ease of administration. These data could have an impact on orally administered medicines for cats and other veterinary species through product differentiation and competitive advantage in the companion animal market sector. The study also outlines the use of the electronic tongue as a tool for formulation selection in the veterinary field

    Human mouthfeel panel investigating the acceptability of electrospun and solvent cast orodispersible films

    Get PDF
    A human panel study was performed to investigate the acceptability of orodispersible electrospun and solvent cast films. 50 healthy volunteers took two drug-free samples of polyvinyl alcohol films prepared by the two methods. On a 5-point hedonic scale, the volunteers assessed the films’ perceived size, stickiness, thickness, disintegration time, thickening effect on saliva, and handling. The films manufactured by both methods were similar in their end-user acceptability. The modal values of perceived size, thickness, disintegration time, saliva thickening effect, and handling were high (4 or 5). However, for both, the stickiness mode was 2 (strongly sticky) and the only negative attribute. Both films were reported to take approximately 30 s to disintegrate completely in the mouth. Electrospun films scored similarly high to solvent cast orodispersible films in most attributes of end-user acceptability. Electrospun films were marginally preferred, with 27 out of 50 participants picking electrospinning when presented with a forced choice test of both fabrication methods. This is the first study to show that electrospinning enables the fabrication of orodispersible films that are acceptable to adult human participants in terms of handling and mouthfeel and suggests that the potential for clinical translation of such formulations is high

    Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery

    Get PDF
    The present study describes the use of two taste-masking polymers to fabricate a formulation of chlorpheniramine maleate for paediatric administration. Co-axial electrospinning was utilized to create layered nanofibres; the two polymers, Eudragit® E PO and Kollicoat® Smartseal, were alternated between the core and the shell of the system in order to identify the optimum taste-masked formulation. The drug was loaded in the core on all occasions. It was found that the formulation with Kollicoat® Smartseal in the core with the drug, and Eudragit® E PO in the shell showed the most effective taste-masking compared to the other formulations. These fibres were in the nano-range and had smooth morphology as verified by scanning electron microscopy. Solid-state characterization and thermal analysis confirmed that amorphous solid dispersions were formed upon electrospinning. The Insent E-tongue was used to assess the taste-masking efficiency of the samples, and it was found that this formulation was undetectable by the bitter sensor, indicating successful taste-masking compared to the raw version of the drug. The E-tongue also confirmed the drug’s bitterness threshold as compared to quinine HCl dihydrate, a parameter that is useful for formulation design and taste-masking planning

    Evaluation of the taste-masking effects of (2-hydroxypropyl)-β-cyclodextrin on ranitidine hydrochloride; a combined biosensor, spectroscopic and molecular modelling assessment

    Get PDF
    Taste assessment in an increasingly important aspect of formulation development, particularly for paediatric medications. Electronic taste sensing systems have the potential to offer a rapid, objective and safe method of taste assessment prior to the use of more costly human panels or animal models. In this study, the ability of the TS-5000Z taste sensing system to assess the taste masking efficiency of (2-hydroxypropyl)-β-cyclodextrin (HP-β-CyD) complexes with ranitidine hydrochloride was evaluated in order to explore the potential of the biosensor approach as a means of assessing taste masking by inclusion complexation. Nuclear magnetic resonance (NMR) spectroscopy and molecular docking studies were employed to identify and examine the interaction between ranitidine hydrochloride and HP-β-CyD. Taste-masking efficiencies were determined by the Euclidean distance between taste-masked formulations and the pure drug substance on a PCA score plot. The results showed that with increasing molarity of HP-β-CyD in the formulation, the distance from ranitidine hydrochloride increased, thus indicating a significant difference between the taste of the formulation and that of the pure drug. NMR studies also provided strong supporting evidence for the complexation between HP-β-CyD and ranitidine hydrochloride, with the H3′ region of the former identified as the most likely binding site for the drug. Molecular docking studies suggested that the dimethylamino and diamine groups of the drug form direct hydrogen bonds with the hydroxyl oxygen atoms of HP-β-CyD, while the furan ring docks in close proximity to H3′. This study has demonstrated that the biosensor system may provide quantitative data to assess bitterness of inclusion complexes with HP-β-CyD, while spectroscopic and modelling studies may provide a mechanistic explanation for the taste masking process. This in turn suggests that there is a role for biosensor approaches in providing early screening for taste masking using inclusion complexation and that the combination with mechanistic studies may provide insights into the molecular basis of taste and taste masking

    A Potential Alternative Orodispersible Formulation to Prednisolone Sodium Phosphate Orally Disintegrating Tablets

    Get PDF
    The orally disintegrating tablet (ODT) has shown vast potential as an alternative oral dosage form to conventional tablets wherein they can disintegrate rapidly (≤30 s) upon contact with saliva fluid and should have an acceptable mouthfeel as long as their weight doesn’t exceed 500 mg. However, owing to the bitterness of several active ingredients, there is a need to find a suitable alternative to ODTs that maintains their features and can be taste-masked more simply and inexpensively. Therefore, electrospun nanofibers and solvent-cast oral dispersible films (ODFs) are used in this study as potential OD formulations for prednisolone sodium phosphate (PSP) that is commercially available as ODTs. The encapsulation efficiency (EE%) of the ODFs was higher (≈100%) compared to the nanofibers (≈87%), while the disintegration time was considerably faster for the electrospun nanofibers (≈30 s) than the solvent-cast ODFs (≈700 s). Hence, accelerated release rate of PSP from the nanofibers was obtained, due to their higher surface area and characteristic surface morphology that permitted higher wettability and thus, faster erosion. Taste-assessment study using the electronic-tongue quantified the bitterness threshold of the drug and its aversiveness concentration (2.79 mM). Therefore, a taste-masking strategy would be useful when further formulating PSP as an OD formulation

    Microfluidic synthesis of protein-loaded nanogels in a coaxial flow reactor using a design of experiments approach

    Get PDF
    Ionic gelation is commonly used to generate nanogels but often results in poor control over size and polydispersity. In this work we present a novel approach to the continuous manufacture of protein-loaded chitosan nanogels using microfluidics whereby we demonstrate high control and uniformity of the product characteristics. Specifically, a coaxial flow reactor (CFR) was employed to control the synthesis of the nanogels, comprising an inner microcapillary of internal diameter (ID) 0.595 mm and a larger outer glass tube of ID 1.6 mm. The CFR successfully facilitated the ionic gelation process via chitosan and lysozyme flowing through the inner microcapillary, while cross-linkers sodium tripolyphosphate (TPP) and 1-ethyl-2-(3-dimethylaminopropyl)-carbodiimide (EDC) flowed through the larger outer tube. In conjunction with the CFR, a four-factor three-level face-centered central composite design (CCD) was used to ascertain the relationship between various factors involved in nanogel production and their responses. Specifically, four factors including chitosan concentration, TPP concentration, flow ratio and lysozyme concentration were investigated for their effects on three responses (size, polydispersity index (PDI) and encapsulation efficiency (% EE)). A desirability function was applied to identify the optimum parameters to formulate nanogels in the CFR with ideal characteristics. Nanogels prepared using the optimal parameters were successfully produced in the nanoparticle range at 84 ± 4 nm, showing a high encapsulation efficiency of 94.6 ± 2.9% and a high monodispersity of 0.26 ± 0.01. The lysis activity of the protein lysozyme was significantly enhanced in the nanogels at 157.6% in comparison to lysozyme alone. Overall, the study has demonstrated that the CFR is a viable method for the synthesis of functional nanogels containing bioactive molecules

    The Influence of Drug Physical State on the Dissolution Enhancement of Solid Dispersions Prepared Via Hot-Melt Extrusion: A Case Study Using Olanzapine

    Get PDF
    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%–16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves
    • …
    corecore