32 research outputs found
Prevalence and risk factors of diabetes and impaired fasting glucose in Nauru
<p>Abstract</p> <p>Background</p> <p>No comprehensive assessment of diabetes prevalence in Nauru has been conducted since an extreme prevalence was documented more than two decades ago. This study aims to determine the prevalence and risk factors of diabetes and impaired fasting glucose.</p> <p>Methods</p> <p>A nationwide survey in 2004 of people aged 15- 64 years (n = 1592). Fasting plasma glucose levels were used to defined diabetes (≥7.0 mmol/l or 126 mg/dl) and prediabetes (6.1-6.9 mmol/l or 110-125 mg/dl).</p> <p>Results</p> <p>The sex-standardized prevalence of diabetes was 13.0% (95% CI: 10.6, 15.4) in men, 14.4% (11.9, 16.9) in women, and 13.7% (12.0, 15.4) combined. The sex-standardized prevalence of prediabetes was 6.4% (4.6, 8.2) for men, 5.5% (3.9, 7.2) for women, and 6.0% (4.8, 7.3) combined. The prevalence of diabetes for individuals 15-24, 25-34, 35-44, 45-54 and 55-64 years was 4.5%, 7.6%, 24.1%, 32.9%, and 42.7%, respectively. The prevalence of prediabetes for the same age categories was 4.2%, 8.8%, 5.9%, 6.6%, 7.1%, respectively. Multivariable, multinomial logit modeling found risk factors for prediabetes were high cholesterol levels (OR: 2.02, 95% CI: 1.66, 2.47) and elevated waist circumference (OR: 1.04, 95% CI: 1.00, 1.08), and for diabetes were age in years (OR: 1.06; 95% CI: 1.04, 1.07), cholesterol levels (OR: 1.84, 95% CI: 1.58, 2.14) and waist circumference (OR: 1.04, 95% CI: 1.02, 1.07).</p> <p>Conclusions</p> <p>Diabetes remains a major public health problem in Nauru, affecting one out of every ten people. While the prevalence of diabetes has declined, its burden has persisted among the old but also extended towards the younger age groups.</p
Mechanically-Controlled Binary Conductance Switching of a Single-Molecule Junction
Molecular-scale components are expected to be central to nanoscale electronic
devices. While molecular-scale switching has been reported in atomic quantum
point contacts, single-molecule junctions provide the additional flexibility of
tuning the on/off conductance states through molecular design. Thus far,
switching in single-molecule junctions has been attributed to changes in the
conformation or charge state of the molecule. Here, we demonstrate reversible
binary switching in a single-molecule junction by mechanical control of the
metal-molecule contact geometry. We show that 4,4'-bipyridine-gold
single-molecule junctions can be reversibly switched between two conductance
states through repeated junction elongation and compression. Using
first-principles calculations, we attribute the different measured conductance
states to distinct contact geometries at the flexible but stable N-Au bond:
conductance is low when the N-Au bond is perpendicular to the conducting
pi-system, and high otherwise. This switching mechanism, inherent to the
pyridine-gold link, could form the basis of a new class of
mechanically-activated single-molecule switches
Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces
Molecular interaction between nucleic acid bases and amino acids is a fundamental process in biology. The adsorption of the molecules on surfaces provides the opportunity to study such interactions in great detail by exploiting the high-resolution imaging capabilities of scanning tunnelling microscopy (STM). The chemisorption of prochiral molecules, such as adenine, on a metal surface causes the adsorbed species to become chiral1. Subsequent interactions with inherently chiral molecules may then lead to the formation of diastereoisomers, if the enantiomeric interaction process is sufficiently strong. In the case of adenine adsorption on Cu{110}, the chiral adsorbates form homochiral chains. Here, we show that the adenine chain direction is fully correlated with the chirality, and that the α-amino acid, phenylglycine, shows a strong chiral preference in its interaction with these chains. STM images clearly demonstrate that S-phenylglycine (R-phenylglycine) binds only to chains rotated 19.5° (anti-) clockwise from the [001] direction. Closer examination reveals that the enantiomeric interaction involves double rows of phenylglycine molecules and the adenine chains. This is the first observation at the molecular level of diastereoisomeric interaction, and demonstrates that STM is a powerful method for studying the details of these interactions