59 research outputs found

    Keeping Pace with Your Eating: Visual Feedback Affects Eating Rate in Humans

    Get PDF
    Deliberately eating at a slower pace promotes satiation and eating quickly has been associated with a higher body mass index. Therefore, understanding factors that affect eating rate should be given high priority. Eating rate is affected by the physical/textural properties of a food, by motivational state, and by portion size and palatability. This study explored the prospect that eating rate is also influenced by a hitherto unexplored cognitive process that uses ongoing perceptual estimates of the volume of food remaining in a container to adjust intake during a meal. A 2 (amount seen; 300ml or 500ml) x 2 (amount eaten; 300ml or 500ml) between-subjects design was employed (10 participants in each condition). In two ‘congruent’ conditions, the same amount was seen at the outset and then subsequently consumed (300ml or 500ml). To dissociate visual feedback of portion size and actual amount consumed, food was covertly added or removed from a bowl using a peristaltic pump. This created two additional ‘incongruent’ conditions, in which 300ml was seen but 500ml was eaten or vice versa. We repeated these conditions using a savoury soup and a sweet dessert. Eating rate (ml per second) was assessed during lunch. After lunch we assessed fullness over a 60-minute period. In the congruent conditions, eating rate was unaffected by the actual volume of food that was consumed (300ml or 500ml). By contrast, we observed a marked difference across the incongruent conditions. Specifically, participants who saw 300ml but actually consumed 500ml ate at a faster rate than participants who saw 500ml but actually consumed 300ml. Participants were unaware that their portion size had been manipulated. Nevertheless, when it disappeared faster or slower than anticipated they adjusted their rate of eating accordingly. This suggests that the control of eating rate involves visual feedback and is not a simple reflexive response to orosensory stimulatio

    The Role of Recombination for the Coevolutionary Dynamics of HIV and the Immune Response

    Get PDF
    The evolutionary implications of recombination in HIV remain not fully understood. A plausible effect could be an enhancement of immune escape from cytotoxic T lymphocytes (CTLs). In order to test this hypothesis, we constructed a population dynamic model of immune escape in HIV and examined the viral-immune dynamics with and without recombination. Our model shows that recombination (i) increases the genetic diversity of the viral population, (ii) accelerates the emergence of escape mutations with and without compensatory mutations, and (iii) accelerates the acquisition of immune escape mutations in the early stage of viral infection. We see a particularly strong impact of recombination in systems with broad, non-immunodominant CTL responses. Overall, our study argues for the importance of recombination in HIV in allowing the virus to adapt to changing selective pressures as imposed by the immune system and shows that the effect of recombination depends on the immunodominance pattern of effector T cell responses

    Teaching Acceptance and Mindfulness to Improve the Lives of the Obese: A Preliminary Test of a Theoretical Model

    No full text
    Obesity is a growing epidemic. Weight control interventions can achieve weight loss, but most is regained over time. Stigma and low quality of life are significant problems that are rarely targeted. A new model aimed at reducing avoidant behavior and increasing psychological flexibility, has shown to be relevant in the treatment of other chronic health problems and is worth examining for improving the lives of obese persons. Patients who had completed at least 6 months of a weight loss program (N = 84) were randomly assigned to receive a 1-day, mindfulness and acceptance-based workshop targeting obesity-related stigma and psychological distress or be placed on a waiting list. At a 3-month follow-up, workshop participants showed greater improvements in obesity-related stigma, quality of life, psychological distress, and body mass, as well as improvements in distress tolerance, and both general and weight-specific acceptance and psychological flexibility. Effects on distress, stigma, and quality of life were above and beyond the effects due to improved weight control. Mediational analyses indicated that changes in weight-specific acceptance coping and psychological flexibility mediated changes in outcomes. Results provide preliminary support for the role of acceptance and mindfulness in improving the quality of life of obese individuals while simultaneously augmenting their weight control efforts

    Role of animal models in the study of drug-induced hypersensitivity reactions

    No full text
    Drug-induced hypersensitivity reactions (DHRs) are a major problem, in large part because of their unpredictable nature. If we understood the mechanisms of these reactions better, they might be predictable. Their unpredictable nature also makes mechanistic studies very difficult, especially prospective clinical studies. Animal models are vital to most biomedical research, and they are almost the only way to test basis hypotheses of DHRs, such as the involvement of reactive metabolites. However, useful animal models of DHRs are rare because DHRs are also unpredictable in animals. For example, sulfonamide-induced DHRs in large-breed dogs appear to be valid because they are very similar to the DHRs that occur in humans; however, the incidence is only ∼0.25%, and large-breed dogs are difficult to use as an animal model. Two more practical models are penicillamine-induced auto-immunity in the Brown Norway rat and nevirapine-induced skin rash in rats. The toxicity in these models is clearly immune mediated. In other models, such as amodiaquine-induced agranulocytosis/hepatotoxicity and halothane-induced hepatotoxicity, the drug induces an immune response but there is no clinical toxicity. This finding suggests that regulatory mechanisms usually limit toxicity. Many of the basic characteristics of the penicillamine and nevirapine models, such as memory and tolerance, are quite different suggesting that the mechanisms are also significantly different. More animal models are needed to study the range of mechanisms involved in DHRs; without them, progress in understanding such reactions is likely to be slow
    • …
    corecore