473 research outputs found

    Unique and conserved MicroRNAs in wheat chromosome 5D revealed by next-generation sequencing

    Get PDF
    MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat

    Astrocytes are important mediators of AΞ²-induced neurotoxicity and tau phosphorylation in primary culture

    Get PDF
    Alzheimer's disease (AD) is pathologically characterised by the age-dependent deposition of Ξ²-amyloid (AΞ²) in senile plaques, intraneuronal accumulation of tau as neurofibrillary tangles, synaptic dysfunction and neuronal death. Neuroinflammation, typified by the accumulation of activated microglia and reactive astrocytes, is believed to modulate the development and/or progression of AD. We have used primary rat neuronal, astrocytic and mixed cortical cultures to investigate the contribution of astrocyte-mediated inflammatory responses during AΞ²-induced neuronal loss. We report that the presence of small numbers of astrocytes exacerbate AΞ²-induced neuronal death, caspase-3 activation and the production of caspase-3-cleaved tau. Furthermore, we show that astrocytes are essential for the AΞ²-induced tau phosphorylation observed in primary neurons. The release of soluble inflammatory factor(s) from astrocytes accompanies these events, and inhibition of astrocyte activation with the anti-inflammatory agent, minocycline, reduces astrocytic inflammatory responses and the associated neuronal loss. AΞ²-induced increases in caspase-3 activation and the production of caspase-3-truncated tau species in neurons were reduced when the astrocytic response was attenuated with minocycline. Taken together, these results show that astrocytes are important mediators of the neurotoxic events downstream of elevated AΞ² in models of AD, and suggest that mechanisms underlying pro-inflammatory cytokine release might be an important target for therapy

    Identification of miRNA from Porphyra yezoensis by High-Throughput Sequencing and Bioinformatics Analysis

    Get PDF
    BACKGROUND: miRNAs are a class of non-coding, small RNAs that are approximately 22 nucleotides long and play important roles in the translational level regulation of gene expression by either directly binding or cleaving target mRNAs. The red alga, Porphyra yezoensis is one of the most important marine economic crops worldwide. To date, only a few miRNAs have been identified in green unicellar alga and there is no report about Porphyra miRNAs. METHODOLOGY/PRINCIPAL FINDINGS: To identify miRNAs in Porphyra yezoensis, a small RNA library was constructed. Solexa technology was used to perform high throughput sequencing of the library and subsequent bioinformatics analysis to identify novel miRNAs. Specifically, 180,557,942 reads produced 13,324 unique miRNAs representing 224 conserved miRNA families that have been identified in other plants species. In addition, seven novel putative miRNAs were predicted from a limited number of ESTs. The potential targets of these putative miRNAs were also predicted based on sequence homology search. CONCLUSIONS/SIGNIFICANCE: This study provides a first large scale cloning and characterization of Porphyra miRNAs and their potential targets. These miRNAs belong to 224 conserved miRNA families and 7 miRNAs are novel in Porphyra. These miRNAs add to the growing database of new miRNA and lay the foundation for further understanding of miRNA function in the regulation of Porphyra yezoensis development

    Identification and characterization of maize microRNAs involved in the very early stage of seed germination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a new class of endogenous small RNAs that play essential regulatory roles in plant growth, development and stress response. Extensive studies of miRNAs have been performed in model plants such as rice, <it>Arabidopsis thaliana </it>and other plants. However, the number of miRNAs discovered in maize is relatively low and little is known about miRNAs involved in the very early stage during seed germination.</p> <p>Results</p> <p>In this study, a small RNA library from maize seed 24 hours after imbibition was sequenced by the Solexa technology. A total of 11,338,273 reads were obtained. 1,047,447 total reads representing 431 unique sRNAs matched to known maize miRNAs. Further analysis confirmed the authenticity of 115 known miRNAs belonging to 24 miRNA families and the discovery of 167 novel miRNAs in maize. Both the known and the novel miRNAs were confirmed by sequencing of a second small RNA library constructed the same way as the one used in the first sequencing. We also found 10 miRNAs that had not been reported in maize, but had been reported in other plant species. All novel sequences had not been earlier described in other plant species. In addition, seven miRNA* sequences were also obtained. Putative targets for 106 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in maize imbibed seed.</p> <p>Conclusions</p> <p>This study led to the confirmation of the authenticity of 115 known miRNAs and the discovery of 167 novel miRNAs in maize. Identification of novel miRNAs resulted in significant enrichment of the repertoire of maize miRNAs and provided insights into miRNA regulation of genes expressed in imbibed seed.</p

    The MicroRNA-200 Family Is Upregulated in Endometrial Carcinoma

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer. The objective of this study was to identify dysregulated miRNAs in endometrioid endometrial adenocarcinoma (EEC) and the precursor lesion, complex atypical hyperplasia (CAH). METHODOLOGY: We compared the expression profiles of 723 human miRNAs from 14 cases of EEC, 10 cases of CAH, and 10 normal proliferative endometria controls using Agilent Human miRNA arrays following RNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues. The expression of 4 dysregulated miRNAs was validated using real time reverse transcription-PCR. RESULTS: Forty-three miRNAs were dysregulated in EEC and CAH compared to normal controls (p<0.05). The entire miR-200 family (miR-200a/b/c, miR-141, and miR-429) was up-regulated in cases of EEC. CONCLUSIONS: This information contributes to the candidate miRNA expression profile that has been generated for EEC and shows that certain miRNAs are dysregulated in the precursor lesion, CAH. These miRNAs in particular may play important roles in tumorigenesis. Examination of miRNAs that are consistently dysregulated in various studies of EEC, like the miR-200 family, will aid in the understanding of the role that miRNAs play in tumorigenesis in this tumour type

    MicroRNA Expression Analysis in the Cellulosic Biofuel Crop Switchgrass (Panicum virgatum) under Abiotic Stress

    Get PDF
    Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology

    Lump-Sum Bonus Satisfaction: Testing the Construct Validity of a New Pay Satisfaction Dimension

    Get PDF
    There are both practical and theoretical reasons to measure lump-sum bonus satisfaction. The practical need for such a measure stems from its increased use as a component in modern compensation practices. Based on the means of administering and allocating lump-sum bonuses, a theoretical case can be built suggesting that lump-sum bonus satisfaction constitutes a separate component of pay satisfaction fitting into the Pay Satisfaction Questionaire\u27s (PSQ) theoretical framework. We develop 4 questions that complement the PSQ, and use a series of techniques to test the convergent and discriminant validity of the measure. Empirical evidence shows that bonus-related items are more related to the lump-sum bonus satisfaction measure than other PSQ dimensions. We also demonstrate that the dimension of lump-sum bonus satisfaction has a substantive relationship with attitudinal variables beyond that provided by pay level variables and the PSQ. The development of this measure should foster greater accuracy when assessing pay satisfaction levels and the effects of lump-sum bonus pay policies

    Characterization of microRNAs Identified in a Table Grapevine Cultivar with Validation of Computationally Predicted Grapevine miRNAs by miR-RACE

    Get PDF
    BACKGROUND: Alignment analysis of the Vv-miRNAs identified from various grapevine cultivars indicates that over 30% orthologous Vv-miRNAs exhibit a 1-3 nucleotide discrepancy only at their ends, suggesting that this sequence discrepancy is not a random event, but might mainly derive from divergence of cultivars. With advantages of miR-RACE technology in determining precise sequences of potential miRNAs from bioinformatics prediction, the precise sequences of vv-miRNAs predicted computationally can be verified with miR-RACE in a different grapevine cultivar. This presents itself as a new approach for large scale discovery of precise miRNAs in different grapevine varieties. METHODOLOGY/PRINCIPAL FINDINGS: Among 88 unique sequences of Vv-miRNAs from bioinformatics prediction, 83 (96.3%) were successfully validated with MiR-RACE in grapevine cv. 'Summer Black'. All the validated sequences were identical to their corresponding ones obtained from deep sequencing of the small RNA library of 'Summer Black'. Quantitative RT-PCR analysis of the expressions levels of 10 Vv-miRNA/target gene pairs in grapevine tissues showed some negative correlation trends. Finally, comparison of Vv-miRNA sequences with their orthologs in Arabidopsis and study on the influence of divergent bases of the orthologous miRNAs on their targeting patterns in grapevine were also done. CONCLUSION: The validation of precise sequences of potential Vv-miRNAs from computational prediction in a different grapevine cultivar can be a new way to identify the orthologous Vv-miRNAs. Nucleotide discrepancy of orthologous Vv-miRNAs from different grapevine cultivars normally does not change their target genes. However, sequence variations of some orthologous miRNAs in grapevine and Arabidopsis can change their targeting patterns. These precise Vv-miRNAs sequences validated in our study could benefit some further study on grapevine functional genomics

    Genome-Wide Functional Analysis of the Cotton Transcriptome by Creating an Integrated EST Database

    Get PDF
    A total of 28,432 unique contigs (25,371 in consensus contigs and 3,061 as singletons) were assembled from all 268,786 cotton ESTs currently available. Several in silico approaches [comparative genomics, Blast, Gene Ontology (GO) analysis, and pathway enrichment by Kyoto Encyclopedia of Genes and Genomes (KEGG)] were employed to investigate global functions of the cotton transcriptome. Cotton EST contigs were clustered into 5,461 groups with a maximum cluster size of 196 members. A total of 27,956 indel mutants and 149,616 single nucleotide polymorphisms (SNPs) were identified from consensus contigs. Interestingly, many contigs with significantly high frequencies of indels or SNPs encode transcription factors and protein kinases. In a comparison with six model plant species, cotton ESTs show the highest overall similarity to grape. A total of 87 cotton miRNAs were identified; 59 of these have not been reported previously from experimental or bioinformatics investigations. We also predicted 3,260 genes as miRNAs targets, which are associated with multiple biological functions, including stress response, metabolism, hormone signal transduction and fiber development. We identified 151 and 4,214 EST-simple sequence repeats (SSRs) from contigs and raw ESTs respectively. To make these data widely available, and to facilitate access to EST-related genetic information, we integrated our results into a comprehensive, fully downloadable web-based cotton EST database (www.leonxie.com)

    The development of endomycorrhizal root systems VIII. Effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots

    Get PDF
    Concentrations of phosphorus in shoot and soluble carbohydrates (fructose, glucose, sucrose and fructans) in root were measured in non-mycorrhizal and vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae) leek plants (Allium porrum) raised at six concentrations of soil phosphate. In conditions when an increased concentration of soil phosphate reduced VA mycorrhizal infection, the concentrations of soluble carbohydrates in the root were at a maximum. Therefore the hypothesis that greater concentrations of soluble carbohydrates in roots favour VA mycorrhizal infection is discounted. There was a specific effect of VA mycorrhizas, in that infected roots contained a larger concentration of sucrose than did uninfected roots, in plants with similar phosphorus concentrations in dry matter of shoots. We conclude, first, that increased phosphorus supply from either phosphate addition to soil or VA mycorrhizal infection increases concentration of soluble carbohydrates in leek roots and, secondly, that the VA mycorrhizal root behaves as a particularly strong physiological sink when there is an excess concentration of sucrose in the host
    • …
    corecore