17 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    RXR receptor agonist suppression of thyroid function: central effects in the absence of thyroid hormone receptor

    No full text
    High-affinity agonists for the retinoic acid X receptors (RXR) have pleotropic effects when administered to humans. These include induction of hypertriglyceridemia and hypothyroidism. We determined the effect of a novel high-affinity RXR agonist with potent antihyperglycemic effects on thyroid function of female Zucker diabetic rats and nondiabetic littermates and in db/ db mice. In both nondiabetic and ZFF rats, AGN194204 causes a 70–80% decrease in thyrotropin (TSH), 3,3′,5-triiodothyronine, and thyroxine (T4) concentrations. In the db/ db mouse, AGN194204 causes a time-dependent decrease in thyroid hormone levels with the fall in TSH that was significant after 1 day of treatment preceding the fall in T4 levels that was significant at 3 days of treatment. Treatment with AGN194204 caused an initial increase in hepatic 5′-deiodinase mRNA levels which then fell to undetectable levels by 3 days of treatment and continued to be low at 7 days of treatment. After treatment for 5 days with AGN194204, both wild-type and thyroid hormone receptor β (TRβ−/−)-deficient mice demonstrated a nearly 50% decrease in serum TSH and T4 concentrations. The results suggest that a high-affinity RXR agonist with antihyperglycemic activity can cause central hypothyroidism independently of TRβ, the main mediator of hormone-induced TSH suppression

    PI3K: From the Bench to the Clinic and Back

    No full text
    From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here, we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here. PI3K has become a very intense area of research, with over 2,000 publications on PI3K in PubMed for 2009 alone. The expectations for a therapeutic impact of intervention with PI3K activity are high, and progress in the clinical arena is being monitored by many. However, targeted therapies almost invariably encounter roadblocks, often exposing unresolved questions in the basic understanding of the target. PI3K will most likely be no exception. Below, we describe some of these early "surprises" and how these inform and shape basic science investigations. © Springer-Verlag Berlin Heidelberg 2010
    corecore