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Small-molecule bioactive natural products continue to be our most rewarding source and 

inspiration for new medicines.1 Sometimes we happen upon such molecules in minute 

quantities in unique, difficult-to-reach, and often fleeting environments, perhaps never to 

be rediscovered again. In these cases, structure determination, including the assignment 

of relative- and absolute configuration, is paramount. Molecules comprising 

stereochemically complex acyclic and conformationally flexible carbon chains make the 

task extremely challenging.2 The baulamycins serve as a contemporary example. Isolated 

in small quantities and shown to have promising antibiotic activity, the structure of the 

conformationally flexible molecule was based largely on J-based configurational 

analysis,3 but has been found to be incorrect.4,5 Our subsequent campaign to identify the 

true structure of the baulamycins has revealed a powerful method for the rapid structural 

elucidation of such molecules. Specifically, DFT-led prediction of NMR parameters, 

combined with an efficient medley of boron-based synthetic transformations, which 

allowed an encoded mixture of natural product diastereomers to be prepared, enabled us 

to rapidly pinpoint and synthesise the correct structure.  

Antimicrobial resistance poses an increasing global public health threat to society.6,7 To address 

this problem, chemical agents that operate through novel modes of action, especially those that 

are unique to the offending microorganism, offer new opportunities.8 For example, iron, which 

is essential for growth and survival of organisms, is carried into microbial cells with the aid of 

siderophores. Inhibiting the biosynthesis of siderophores provides a mechanism of action 

unique to the pathogen because mammalian host cells employ other mechanisms to regulate 

iron concentration.9 From a library of 19,855 marine microbial-derived natural products, and 

using an assay to target siderophore biosynthesis, Sherman et al.  identified two natural 

products, baulamycin A and B, which were active against the superbug MRSA and Bacillus 

anthracis (baulamycin A - 69 μM and 110 μM).4,5 The limited availability of both baulamycin 

A and B (3.6 mg and 2.1 mg, respectively, were obtained from 39 L of culture), precluded 

chemical modification as a means to aid in structural assignment, which was thus guided 

entirely by isotropic solution-state NMR spectroscopy—principally, empirical J-based 

configurational analysis.3 

Because biological study was similarly limited by supply of the natural products, we have 

targeted their syntheses. In this paper, we report a 10-step synthesis of the proposed structures 

of baulamycin A (1) and B (2), but unfortunately found that the data did not match that of the 

natural products. During the course of our work, Guchhait et al.  reported a 17-step synthesis 



of the proposed structure of baulamycin A.10 They similarly found that the data did not match 

and further attempts to prepare the correct diastereomer based on re-examination of the J-based 

configurational analysis was also unsuccessful.  

Elucidating the structures of natural products that are only available in very small quantities is 

often an exceptionally difficult task, highlighted by the high number of structure revisions 

reported every year in the chemical literature.2 This challenge is epitomized in the baulamycins, 

which contain 7 stereogenic centres (128 possible stereoisomers), of which only 3 are 

contiguous, distributed along a 14-carbon-long chain. The flexibility of the chain leads to 

experimental NMR parameters that are a weighted average from an ensemble of conformations. 

This severely complicates configurational analysis to an extent where standard approaches 

based on empirical NMR analysis3 or even recent quantum chemical approaches using 

chemical shift data11–13 are insufficient. However, combining accurate quantum chemical 

prediction of the ensemble-averaged NMR parameters with the analysis of encoded 

stereoisomeric mixtures, which were accessible through the power of iterative reagent-

controlled homologation of boronic esters (assembly-line synthesis),14 have enabled us to 

correct five of the seven stereogenic centers and finally establish the correct structure of these 

important natural products. 

Our retrosynthetic analysis of baulamycin A (1) and B (2) resulted in a disconnection at C11–

C12, thus dividing the target molecule into equally complex halves, fragments A and B (Figure 

1a). We considered their union through a late-stage lithiation–borylation reaction, a process 

utilising our recently reported regio- and stereoselective homologation of a 1,2-bis(boronic 

esters).15 Fragment A could be obtained through a Morken hydroxy-directed diboration of 

homoallylic alcohol 6,16 which itself could be obtained by Antilla allylboration.17,18 Fragment 

B was envisaged to come from our recently developed assembly-line synthesis,14 a process that 

readily lends itself to the synthesis of analogues. We began with the synthesis of fragment A 

(Figure 1b). Rhodium-catalyzed hydroboration of alkyne 13 gave Z-vinyl boronic ester 14,19 

which was homologated with chloromethyl lithium20 to give Z-allyl boronic ester 8. Antilla 

allylboration of the methoxymethyl(MOM)-protected aldehyde gave the homoallylic alcohol 

16 in good yield, high diastereoselectivity, and high enantioselectivity.17,18 Subsequent Morken 

hydroxy-directed diboration,16 gave the 1,2-bis(boronic ester) (R,S,R)-17 (after protection of 

the hydroxy group as the TES ether) in 98:2 d.r., thus completing a short highly stereoselective 

synthesis of fragment A. The synthesis of fragment B commenced with rhodium-catalyzed 

hydroboration of allyl benzoate 19 to give boronic ester 12,21,22 the starting material for 

assembly-line synthesis (Figure 1c). Then, sequential treatment of boronic ester 12 with the 

carbenoids (S)-11, chloromethyl lithium (10), (R)-11, 10 and finally (S)-11, gave the target 

boronic ester 9 in 64% yield. To complete fragment B, we decided to introduce an enol ether 

as a masked ketone, through a Zweifel olefination.23 Thus, boronic ester 9 was treated with 

lithiated MOM vinyl ether 20 and the ethenyl variant 21,24 followed by treatment with I2, giving 

the desired variants of fragment B, (R,S,R)-22 and (R,S,R)-23, in 72 and 86% yield, 

respectively. Fragment union (Figure 1d) involved lithiation of the benzoate ester (22 or 23) 

followed by regioselective homologation of the primary boronic ester moiety of 1,2-

bis(boronic ester) (R,S,R)-17,15 to give the 1,3-bis(boronic ester), which after oxidation gave 

the desired diols 24 and 25 with high stereoselectivity (95:5 d.r.). Finally, treatment with aq. 

HCl in THF/MeOH effected removal of the silyl and MOM groups, completing a short 

synthesis of the proposed structures of baulamycin A (1) and B (2).5 



Unfortunately, the 1H- and 13C NMR spectra of the synthetic samples did not match those of 

the reported natural products, leading us to conclude that one or more of the stereogenic centers 

of the natural products had been misassigned. But which of the seven stereogenic centres was 

incorrect? It was clearly not practical to make all 128 stereoisomers, so further analysis of the 

NMR data was required. The molecule can be divided into two halves and we initially 

considered fragment A, the C10–C1′ portion. Comparing the observed coupling constant for 

the vicinal protons of C1′–C14 in our synthetic material (3.6 Hz) to that of the natural product 

(7.2 Hz) we reassigned the syn configuration of C1′–C14 originally proposed for the natural 

product to anti.  The small and large coupling constants are characteristic of syn and anti motifs, 

respectively, in similar fragments reported in the literature.25-27 The NMR parameters for the 

C10–C1′ region of the four remaining diastereomers, 26–29, which arise from varying the 

configuration at C13 and C11, were computed for comparison with the parameters of the 

isolated material.  For this computational analysis, the relative stereochemical configuration in 

fragment B was maintained as anti–anti, as reported in the original paper.  

Conformational analysis of diastereomers 26–29 using molecular mechanics found between 

650 and 2455 conformations for each diastereomer. For each diastereomer, low-energy 

conformers (~84–196 conformers) were submitted to sequential DFT geometry optimization 

and free-energy calculations (Figure 2d). The populations of the resulting conformers were 

further refined based on the quantitative interproton distances28 calculated from Sherman et al. 

ROESY measurements. The conformers predicted to make up >85% of the ensemble 

populations of diastereomers 26–29 (8–28 conformers) were subjected to DFT calculations for 

the prediction of coupling constants for the C10–C1′ regions. We then compared both the 

calculated 1H–1H coupling constants and the NOE-derived interproton distances for the C10–

C1′ region of diastereomers 26–29 with the corresponding experimental data for the isolated 

natural product, baulamycin A, and applied a statistical analysis based on χ2 (reduced) values 

(Figure 2c), where acceptable models must have values approaching 1. Based on 1H–1H 

coupling constants alone, there in an excellent fit for the C10–C1′ region of 29 ((χ2 (reduced) 

= 1.5), moderate fits but potentially viable matches for both 26 (χ2 (reduced) = 2.4) and 27 (χ2 

(reduced) = 2.1) and no reasonable fit possible for 28 (χ2 (reduced) = 6.2). Based on NOE 

distances alone, there are good fits for 28 and 29 (χ2 (reduced) = 1.4 and 1.7 respectively) and 

poor fits for 26 and 27 (χ2 (reduced) = 5.3 and 5.4, respectively). Similarly, comparison of the 

DFT-predicted NMR parameters of the structure originally proposed for baulamycin A, 1, with 

the experimental NMR data of the isolated material revealed that both sets of NMR parameters 

did not fit simultaneously (χ2 (reduced) = 1.6 and 5.1 for 1H–1H coupling constants and NOE 

distances, respectively). Thus, diastereomer 29 was the only structure that fitted both 

experimental NMR parameters simultaneously for fragment A. The analysis had thus identified 

the relative configuration of four of the seven stereogenic centres, thus reducing the possible 

isomers of baulamycin from 128 down to 16. This assignment is also supported by χ2 (reduced) 

analysis of computed chemical shifts and 1H−13C coupling constants, although neither was as 

discriminating as analysis based on 1H–1H coupling constants and NOE distances. Applying 

comparable analyses from Willoughby et al.11 or the DP4 method of Goodman et al.,12 based 

on computed NMR chemical shifts for diastereomers 1 and 26–29 could not alone provide 

structural discrimination, thus highlighting the care that must be taken with NMR-based 

stereochemical analysis of flexible complex molecules. The revised anti–anti fragment A, 

(R,R,R)-34, was synthesized by employing the same highly diastereoselective method used for 



(R,S,R)-17 but using the E-allyl boronic ester 3229 in place of the corresponding Z isomer in 

the Antilla allylboration (Figure 2e).  

Computational analysis of fragment B (C4–C8) for diastereomers 29 and 35–37 was also 

undertaken, but in this case only 1H–1H coupling constants were computed (Figure 3c) owing 

to overlap in the critical region of Sherman et al.’s 2D ROESY spectrum. This analysis 

indicated that diastereomers 29 and 35 were very poor fits (χ2(reduced) = 4.7 and 8.6, 

respectively) and could be excluded from consideration; however, syn–anti and syn–syn 

diastereomers 36 and 37 could not be discriminated (χ2(reduced) = 1.6 and 1.6, respectively) 

based on 1H–1H coupling constants alone. Further analysis of the fits of chemical shifts, whilst 

less discriminating than fits of coupling constants, suggested that syn–syn diastereomer 37 gave 

a good fit (χ2(reduced) = 0.2 and 0.6 for 1H and 13C chemical shifts, respectively) but syn–anti 

diastereomer 36 fitted less well (χ2(reduced) = 0.9 and 2.9, respectively). 

In parallel, we sought to determine the relative configuration of fragment B through synthesis. 

We anticipated that the most powerful aspect of assembly-line synthesis, that is, the exquisite 

reagent control over stereoselectivity, could be used to rapidly generate an encoded mixture of 

all four diastereomers of fragment B, the identity of each diastereomer being indicated by its 

relative population. The strategy is reminiscent of Curran’s fluorous-mixture synthesis, which 

was used to rapidly identify stereoisomers of a given natural product.30 Specifically, growing 

the C11–C1 carbon chain by using chiral carbenoids with moderate, yet accurately measured 

e.r. values (for C8, C6 and C4) would lead to fragment B as a mixture of all four diastereomers, 

where the relative population of each diastereomer could be accurately predicted (Figure 3d). 

Linking the revised anti–anti fragment A with this diastereomeric mixture would give a 

mixture of diastereomers 29 and 35−37. Comparison of the resulting 13C NMR spectrum with 

that of the isolated material and noting the relative integration of the matching peaks should 

immediately confirm the relative configuration of the methyl-group-rich region. At this stage, 

we decided to prepare only one enantiomeric series of the four diastereomers of fragment B. 

We would then resolve, at a later stage, the remaining stereochemical elements.  

For this approach, we needed to ensure that the relative populations of diastereomers was such 

that all four diastereomers could be accurately quantified by NMR spectroscopy and that they 

were maximally distributed in terms of peak intensity. We therefore selected e.r. values (S:R) 

of >99.9:0.1, 72:28 and 64:36 for α-stannyl ethyl benzoate, the carbenoid precursor to be used 

in the assembly-line synthesis, at the 1st (C8), 3rd (C6), and 5th (C4) iterations, respectively. 

These e.r. values were calculated to lead to a 46:26:18:10 mixture of diastereomers 

37/36/29/35. Using R/S mixtures of carbenoid precursors with accurately measured e.r. values, 

we obtained fragment B as a 47:25:18:10 mixture of diastereomers (Figure 3d). The almost 

perfect match between the expected and observed ratio of diastereomers showed that the 

homologation reactions operated under full reagent control. The mixture was carried forward 

for fragment coupling and removal of protecting groups (Figure 3d) to give the desired mixture 

of baulamycin A diastereomers, the 47:25:18:10 ratio being retained with high fidelity. 

Comparison of the 13C NMR spectrum of the mixture of diastereomers (Figure 3e) with that of 

the isolated natural product revealed that the chemical shifts of the diastereomer with the 

highest population matched those of the natural product closely and, in agreement with the 

DFT calculations, this established that the correct relative configuration of fragment B was 

indeed syn–syn, not anti–anti as originally proposed. 



With relative configuration within each fragment established, we set out to determine which of 

the two remaining diastereomers (C11/C8 syn or C11/C8 anti) was baulamycin A (Figure 4). 

The two enantiomers of the anti–anti–syn diastereomer of fragment A [(R,R,R)-34 and (S,S,S)-

38] were coupled to the syn–syn diastereomer of fragment B [(R,R,R)-39]. As expected, the 

two diastereomers, 37 and 40, had almost identical 13C NMR spectra, but very small differences 

at C7, C9, and C11 were discernable, with the C11/C8 syn diastereomer matching the natural 

product perfectly. Furthermore, the diastereomers exhibited marked differences in certain 

regions of the 1H NMR spectra, the C11/C8 syn diastereomer 37 again matching the spectrum 

of the natural product perfectly. However, the optical rotation of the synthesized matching 

diastereomer 37 was positive whereas that of the isolated natural product was negative, thus 

indicating that compound 37 was the enantiomer of the natural product. To prepare the correct 

enantiomer of baulamycin A, fragment A (S,S,S)-38 and fragments B (S,S,S)-41 were linked 

together to ultimately give baulamycin A. Baulamycin B, with the revised configuration, was 

also synthesized using the same protocol, the analytical data fully matching that of the reported 

natural product.  
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Figure 1. Retrosynthetic analysis and synthesis of originally proposed structure of 

baulamycin A and B. a, Disconnection across the C11–C12 bond gives two fragments, 

which can be combined using a late-stage lithiation–borylation reaction. Fragments A and B 

can be assembled from smaller building blocks. P, protecting group; TIB, 2,4,6-

triisopropylbenzoyl; pin, pinacolato. b, Synthesis of fragment A (R,S,R)-17.  c, Synthesis of 

fragment B, (R,S,R)-22 and (R,S,R)-23, for baulamycin A and B, respectively. d, Fragment 

union and deprotection to give proposed structures for baulamycin A (1) and B (2). cat, 

catecholato; cod, cyclooctadiene; TRIP-PA, 3,3′-bis(2,4,6-triisopropylphenyl)-1,1′-

binaphthyl-2,2′-diyl hydrogenphosphate; MOM,  methoxymethyl; TES, triethylsilyl; sp, 

sparteine.   

  



 

Figure 2. Stereochemical analysis and synthesis of fragment A. a, The proposed structure 

of baulamycin A (1) from Sherman et al.[8] highlighting fragment A. b, Structures of 

fragment A diastereomers 26–29 used in DFT predictions of NMR parameters for C10–C1ʹ. 

c, Computed C10–C1ʹ NMR parameters (1H–1H coupling constants, NOE distances) of 26–

29 and 1 were compared to the corresponding experimental data of the natural product. 

Diastereomer 29 is the only viable fit (χ2(reduced) ~1) to the corresponding experimental 

data. d, An overlay of all conformers of 29 analysed with DFT calculations. e, Synthesis of 

revised fragment A (R,R,R)-34. [Pd(dmba)Cl]2, di-μ-chlorobis{2- 

[(dimethylamino)methyl]phenyl-C,N}dipalladium(II). 

  



 

 

Figure 3. Stereochemical analysis and synthesis of fragment B.  a, Isomers of baulamycin 

A based on 29, highlighting fragment B. b, Fragment B diastereomers 29 and 35−37. c, 

Comparison of computed C4−C8 NMR parameters of 29 and 35−37 with experimental data. 

29 and 35 can be excluded (χ2(reduced) >>1) and 37 is the most viable fit; 36 may not be 

confidently excluded. d, Synthesis of an encoded mixture of baulamycin A diastereomers (by 

virtue of known but inequivalent amounts of each isomer). e, Comparison of the resulting 13C 

NMR spectrum (C6 and C21) with that of the natural product indicating a match for signals 

corresponding to 37 (a).  
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Figure 4. Determination of relative and absolute configuration of baulamycins A and B. 

a, Reaction of the two enantiomers of fragment A (S,S,S)-38 and (R,R,R)-34) with one 

enantiomer of fragment B ((R,R,R)-39). Comparison of the 1H and 13C NMR of compounds 

40 and 37 revealed that 37 had the same relative configuration as baulamycin A, but had 

opposite optical rotation to the natural product. b, Coupling of fragments A (S,S,S)-38 and B 

((S,S,S)-41 and (S,S,S)-42) to give the correct structure of baulamycin A (ent-37) and B (43).  


