15 research outputs found
Correction to: Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model
Correction to: Cell Death Dis. (2016) 7, e2359; https://doi.org/10.1038/cddis.2016.263; published online 08 September 2016</jats:p
Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF’s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF’s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD
Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation
Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer
The IL-6 family of cytokines consists of IL-6, IL-11, IL-27, IL-31, oncostatin M (OSM), leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by usage of common β-receptor signalling subunits, which activate various intracellular signalling pathways. Each IL-6 family member elicits responses essential to the physiological control of immune homeostasis, haematopoiesis, inflammation, development and metabolism. Accordingly, distortion of these cytokine activities often promotes chronic disease and cancer; the pathological importance of this is exemplified by the successful treatment of certain autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and review therapeutic strategies designed to manipulate these cytokines in disease
Risk of progression of idiopathic pulmonary fibrosis to connective tissue disease: a long-term observational study in 527 patients
Targeted next-generation sequencing supports epidermoid metaplasia of the esophagus as a precursor to esophageal squamous neoplasia
Esophageal epidermoid metaplasia is a rare condition that involves the proximal-to-middle third of the esophagus. It is sharply demarcated and defined histologically by epithelial hyperplasia, a prominent granular cell layer, and superficial hyperorthokeratosis. In addition, preliminary studies have suggested an association between esophageal epidermoid metaplasia and esophageal squamous neoplasia (squamous dysplasia and esophageal squamous cell carcinoma). To further characterize esophageal epidermoid metaplasia and better define its relationship to squamous neoplasia of the esophagus, we performed targeted next-generation sequencing on uninvolved esophageal squamous mucosa and matching esophageal epidermoid metaplasia specimens from 18 patients. Further, we evaluated both synchronous and metachronous high-grade squamous dysplasia/esophageal squamous cell carcinoma by next-generation sequencing from 5 of the 18 (28%) patients, and compared these findings to corresponding esophageal epidermoid metaplasia specimens. Targeted next-generation sequencing revealed 12 of 18 (67%) esophageal epidermoid metaplasia specimens' harbored alterations in genes often associated with esophageal squamous cell carcinoma. The most frequently mutated genes consisted of TP53 (n=10), PIK3CA (n=2), EGFR (n=2), MYCN (n=1), HRAS (n=1), and the TERT promoter (n=1). Sequencing of synchronous and metachronous high-grade squamous dysplasia/esophageal squamous cell carcinoma identified shared genetic alterations with corresponding esophageal epidermoid metaplasia specimens that suggests a clonal relationship between these entities. In addition, the presence of a TP53 mutation in esophageal epidermoid metaplasia specimens correlated with concurrent or progression to high-grade squamous dysplasia/esophageal squamous cell carcinoma. No genetic alterations were detected in uninvolved esophageal squamous mucosa. On the basis of these findings, we conclude esophageal epidermoid metaplasia is a precursor to in situ and invasive esophageal squamous neoplasia. Further, the detection of TP53 mutations in esophageal epidermoid metaplasia specimens may serve as an early detection biomarker for high-grade squamous dysplasia/esophageal squamous cell carcinoma
