25 research outputs found
Terrain, politics, history
This article is based on the 2019 Dialogues in Human Geography plenary lecture at the Royal Geographical Society. It has four parts. The first discusses my work on territory in relation to recent work by geographers and others on the vertical, the volumetric, the voluminous, and the milieu as ways of thinking space in three-dimensions, of a fluid and dynamic earth. Second, it proposes using the concept of terrain to analyse the political materiality of territory. Third, it adds some cautions to this, through thinking about the history of the concept of terrain in geographical thought, which has tended to associate it with either physical or military geography. Finally, it suggests that this work is a way geographers might begin to respond to the challenge recently made by Bruno Latour, where he suggests that ‘belonging to a territory is the phenomenon most in need of rethinking and careful redescription; learning new ways to inhabit the Earth is our biggest challenge’. Responding to Latour continues this thinking about the relations between territory, Earth, land, and ground, and their limits
Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants
Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance
Surface Architecture Influences the Rigidity of <i>Candida albicans</i> Cells
Atomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, Candida albicans ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness (Sa) values of 389 nm, 14 nm, and 2 nm, kurtosis (Skur) values of 4, 16, and 4, and skewness (Sskw) values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar Sskw and Skur values but highly disparate Sa. C. albicans cells that had attached to the pTi surfaces exhibited a twofold increase in rigidity of 364 kPa compared to those yeast cells attached to the surfaces of npTi (164 kPa) and glass (185 kPa). The increased rigidity of the C. albicans cells on pTi was accompanied by a distinct round morphology, condensed F-actin distribution, lack of cortical actin patches, and the negligible production of cell-associated polymeric substances; however, an elevated production of loose extracellular polymeric substances (EPS) was observed. The differences in the physical response of C. albicans cells attached to the three surfaces suggested that the surface nanoarchitecture (characterized by skewness and kurtosis), rather than average surface roughness, could directly influence the rigidity of the C. albicans cells. This work contributes to the next-generation design of antifungal surfaces by exploiting surface architecture to control the extent of biofilm formation undertaken by yeast pathogens and highlights the importance of performing a detailed surface roughness characterization in order to identify and discriminate between the surface characteristics that may influence the extent of cell attachment and the subsequent behavior of the attached cells
Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes
It is commonly accepted that nanoparticles (NPs) can kill bacteria; however, the mechanism of antimicrobial action remains obscure for large NPs that cannot translocate the bacterial cell wall. It is demonstrated that the increase in membrane tension caused by the adsorption of NPs is responsible for mechanical deformation, leading to cell rupture and death. A biophysical model of the NP–membrane interactions is presented which suggests that adsorbed NPs cause membrane stretching and squeezing. This general phenomenon is demonstrated experimentally using both model membranes and Pseudomonas aeruginosa and Staphylococcus aureus, representing Gram‐positive and Gram‐negative bacteria. Hydrophilic and hydrophobic quasi‐spherical and star‐shaped gold (Au)NPs are synthesized to explore the antibacterial mechanism of non‐translocating AuNPs. Direct observation of nanoparticle‐induced membrane tension and squeezing is demonstrated using a custom‐designed microfluidic device, which relieves contraction of the model membrane surface area and eventual lipid bilayer collapse. Quasi‐spherical nanoparticles exhibit a greater bactericidal action due to a higher interactive affinity, resulting in greater membrane stretching and rupturing, corroborating the theoretical model. Electron microscopy techniques are used to characterize the NP–bacterial‐membrane interactions. This combination of experimental and theoretical results confirm the proposed mechanism of membrane‐tension‐induced (mechanical) killing of bacterial cells by non‐translocating NPs
High Aspect Ratio Nanostructures Kill Bacteria via Storage and Release of Mechanical Energy.
The threat of a global rise in the number of untreatable infections caused by antibiotic-resistant bacteria calls for the design and fabrication of a new generation of bactericidal materials. Here, we report a concept for the design of antibacterial surfaces, whereby cell death results from the ability of the nanofeatures to deflect when in contact with attaching cells. We show, using three-dimensional transmission electron microscopy, that the exceptionally high aspect ratio (100-3000) of vertically aligned carbon nanotubes (VACNTs) imparts extreme flexibility, which enhances the elastic energy storage in CNTs as they bend in contact with bacteria. Our experimental and theoretical analyses demonstrate that, for high aspect ratio structures, the bending energy stored in the CNTs is a substantial factor for the physical rupturing of both Gram-positive and Gram-negative bacteria. The highest bactericidal rates (99.3% for Pseudomonas aeruginosa and 84.9% for Staphylococcus aureus) were obtained by modifying the length of the VACNTs, allowing us to identify the optimal substratum properties to kill different types of bacteria efficiently. This work highlights that the bactericidal activity of high aspect ratio nanofeatures can outperform both natural bactericidal surfaces and other synthetic nanostructured multifunctional surfaces reported in previous studies. The present systems exhibit the highest bactericidal activity of a CNT-based substratum against a Gram-negative bacterium reported to date, suggesting the possibility of achieving close to 100% bacterial inactivation on VACNT-based substrata.MDV and SJ acknowledge support from the ERC Starting Grant HIENA 337739. V.A.B. M.W. and E.P.I. acknowledge funding from Marie Curie Actions under EU FP7 Initial Training Network SNAL 608184
Understanding the Influence of Serum Proteins Adsorption on the Mechano‐Bactericidal Efficacy and Immunomodulation of Nanostructured Titanium (Adv. Mater. Interfaces 17/2024)
Understanding the Influence of Serum Proteins Adsorption on the Mechano-Bactericidal Efficacy and Immunomodulation of Nanostructured Titanium
Nanostructured surfaces are effective at physically killing bacterial cells, highlighting their prospective application as biomaterials. The benefits of application of mechano-bactericidal nanostructures as an alternative to chemical functionalisation are well documented, however, the effects of protein adsorption are not well understood. In this work, theoretical and experimental analyses are conducted by studying the adsorption of human serum proteins (HSP) to nanosheet titanium (Ti) and its subsequent effect on the mechano-bactericidal efficacy toward Staphylococcus aureus and Pseudomonas aeruginosa cells. The nanosheet pattern exhibits enhanced antibiofouling behaviour mantaining high bactericidal efficiency toward both Gram-negative and Gram-positive cells in the presence of adsorbed HSP. To ascertain the immunomodulatory response, S. aureus cells are introduced to protein-conditioned Ti nanosheet surfaces prior to introducing RAW 264.7 macrophages. On the pre-infected nanostructured surfaces, macrophages exhibit wound healing behaviour with superior activation of M2-like macrophage polarization and secretion of anti-inflammatory cytokines. By contrast, macrophages attached to infected smooth surfaces activated the M1-like polarized phenotype via the high expression of pro-inflammatory cytokines, indicating persistent inflammation. The outcomes of this work demonstrate the suitability of Ti nanosheets as a potential biomaterial surface whereby the mechano-bactericidal activity is not compromised by HSP adsorption and, furthermore, positively influenced an anti-inflammatory immune response
Piercing of the Human Parainfluenza Virus by Nanostructured Surfaces
This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness
