20 research outputs found

    Reproducibility of patient setup by surface image registration system in conformal radiotherapy of prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reproducibility of patient setup for radiotherapy is based on various methods including external markers, X-rays with planar or computerized image acquisition, and, more recently, surface matching imaging. We analyzed the setup reproducibility of 16 patients affected by prostate cancer who underwent conformal radiotherapy with curative intent by using a surface image registration system.</p> <p>Methods</p> <p>We analyzed the setup reproducibility of 16 patients affected by prostate cancer candidates for conformal radiotherapy by using a surface image registration system. At the initial setup, EPID images were compared with DRRs and a reference 3D surface image was obtained by the AlignRT system (Vision RT, London, UK). Surface images were acquired prior to every subsequent setup procedure. EPID acquisition was repeated when errors > 5 mm were reported.</p> <p>Results</p> <p>The mean random and systematic errors were 1.2 ± 2.3 mm and 0.3 ± 3.0 mm along the X axis, 0.0 ± 1.4 mm and 0.5 ± 2.0 mm along the Y axis, and 2.0 ± 1.8 mm and -0.7 ± 2.4 mm along the Z axis respectively. The positioning error detected by AlignRT along the 3 axes X, Y, and Z exceeded the value of 5 mm in 14.1%, 2.0%, and 5.1% measurements and the value of 3 mm in 36.9%, 13.6% and 27.8% measurements, respectively. Correlation factors calculated by linear regression between the errors measured by AlignRT and EPID ranged from 0.77 to 0.92 with a mean of 0.85 and SD of 0.13. The setup measurements by surface imaging are highly reproducible and correlate with the setup errors detected by EPID.</p> <p>Conclusion</p> <p>Surface image registration system appears to be a simple, fast, non-invasive, and reproducible method to analyze the set-up alignment in 3DCRT of prostate cancer patients.</p

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p

    Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiration-gated radiotherapy (RGRT) can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI) to verify the position of internal structures during RGRT delivery</p> <p>Methods</p> <p>TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems) when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers), and corresponding planning 4-dimensional CT (4DCT) scans were analyzed for motion amplitude.</p> <p>Results</p> <p>Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm) located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm) caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD).</p> <p>Conclusion</p> <p>TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.</p
    corecore