22 research outputs found

    Selective Vulnerability in Striosomes and in the Nigrostriatal Dopaminergic Pathway After Methamphetamine Administration: Early Loss of TH in Striosomes After Methamphetamine

    Get PDF
    Methamphetamine (METH), a commonly abused psychostimulant, causes dopamine neurotoxicity in humans, rodents, and nonhuman primates. This study examined the selective neuroanatomical pattern of dopaminergic neurotoxicity induced by METH in the mouse striatum. We examined the effect of METH on tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoreactivity in the different compartments of the striatum and in the nucleus accumbens. The levels of dopamine and its metabolites, 3,4-dihidroxyphenylacetic acid and homovanillic acid, as well as serotonin (5-HT) and its metabolite, 5-hydroxyindolacetic acid, were also quantified in the striatum. Mice were given three injections of METH (4 mg/kg, i.p.) at 3 h intervals and sacrificed 7 days later. This repeated METH injection induced a hyperthermic response and a decrease in striatal concentrations of dopamine and its metabolites without affecting 5-HT concentrations. In addition, the drug caused a reduction in TH- and DAT-immunoreactivity when compared to saline-treated animals. Interestingly, there was a significantly greater loss of TH- and DAT-immunoreactivity in striosomes than in the matrix. The predominant loss of dopaminergic terminals in the striosomes occurred along the rostrocaudal axis of the striatum. In contrast, METH did not decrease TH- or DAT-immunoreactivity in the nucleus accumbens. These results provide the first evidence that compartments of the mouse striatum, striosomes and matrix, and mesolimbic and nigrostriatal pathways have different vulnerability to METH. This pattern is similar to that observed with other neurotoxins such as MPTP, the most widely used model of Parkinson’s disease, in early Huntington’s disease and hypoxic/ischemic injury, suggesting that these conditions might share mechanisms of neurotoxicity

    Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    No full text
    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling

    The Relationship Between Dopamine Synthesis Capacity and Release:Implications for Psychosis

    Get PDF
    Berry and colleagues report that presynaptic striatal dopamine synthesis capacity (measured with [¹⁸F]FMT PET) is not associated with methylphenidate-induced striatal dopamine release (indexed as a reduction in [¹¹C]raclopride non-displaceable binding-potential) in healthy participants (Berry et al, 2017). The authors should be commended for the quality of this study, in which 40 subjects each received three PET scans within a short time window. The results are pertinent to the interpretation of neuroimaging studies investigating the dopamine hypothesis of schizophrenia

    Changes in Neural Circuitry Regulating Response-Reversal Learning and Arc-Mediated Consolidation of Learning in Rats with Methamphetamine-Induced Partial Monoamine Loss

    No full text
    Methamphetamine (METH)-induced neurotoxicity results in long-lasting depletions of monoamines and changes in basal ganglia function. We previously reported that rats with METH-induced neurotoxicity no longer engage dorsomedial striatum during a response-reversal learning task, as their performance is insensitive to acute disruption of dorsomedial striatal function by local infusion of an N-methyl-D-aspartate receptor antagonist or an antisense oligonucleotide against the activity-regulated cytoskeleton-associated (Arc) gene. However, METH-pretreated rats perform the task as well as controls. Therefore, we hypothesized that the neural circuitry involved in the learning had changed in METH-pretreated rats. To test this hypothesis, rats were pretreated with a neurotoxic regimen of METH or with saline. After 3–5 weeks, rats were trained on the reversal-learning task and in situ hybridization for Arc was performed. A significant correlation between Arc expression and performance on the task was found in nucleus accumbens shell of METH-, but not saline-, pretreated rats. Consistent with the idea that the correlation between Arc expression in a brain region and behavioral performance implicates that brain region in the learning, infusion of an antisense oligonucleotide against Arc into the shell impaired consolidation of reversal learning in METH-, but not saline-, pretreated rats. These findings provide novel evidence suggesting that METH-induced neurotoxicity leads to a shift from dorsal to ventral striatal involvement in the reversal-learning task. Such reorganization of neural circuitry underlying learning and memory processes may contribute to impaired cognitive function in individuals with METH-induced neurotoxicity or others with striatal dopamine loss, such as patients with Parkinson's disease
    corecore