15 research outputs found

    The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains

    No full text
    Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance

    Effects of the Gill-Solent WindMaster-Pro “w-boost” firmware bug on eddy covariance fluxes and some simple recovery strategies

    Get PDF
    In late 2015 and early 2016, work done by the AmeriFlux Management Project Technical Team (amerilfux.lbl.gov) helped to uncover an issue with Gill WindMaster and WindMaster Pro sonic anemometers used by many researchers for eddy covariance flux measurements. Gill has addressed this issue and has since sent out a notice that the vertical wind speed component (a critical piece of all eddy covariance fluxes) was being erroneously computed and reported. The problem (known as the “w-boost” bug) resulted in positive (upward) wind speeds being under-reported by 16.6% and negative (downward) wind speeds being under-reported by 28.9%. This has the potential to cause similar under estimates in fluxes derived from measurements using these instruments. Additionally, the bug affects corrections for angle of attack as derived by Nakai and Shimoyama, rendering them invalid. While the manufacturer has offered a firmware upgrade for existing instruments that will fix this issue, many existing data sets have been affected by it and are currently in use by the scientific community.To address the issue of affected data, currently in use, we analyzed multi-year and short-term data sets from a variety of ecosystems to assess methods of correcting existing flux data. We found that simple multiplicative correction factors (∼1.18) may be used to remove most of the “w-boost” bias from fluxes in existing data sets that do not include angle of attack corrections

    Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska

    No full text
    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink

    Tracing carbon fixation

    No full text
    Land surface models show large divergences in simulating the terrestrial carbon cycle. Atmospheric observations of the tracer carbonyl sulfide allow selection of the most realistic models
    corecore