72 research outputs found

    Optimal Aerodynamic Design of a Transonic Centrifugal Turbine Stage for Organic Rankine Cycle Applications

    Get PDF
    This paper presents the results of the application of a shape-optimization technique to the design of the stator and the rotor of a centrifugal turbine conceived for Organic Rankine Cycle (ORC) applications. Centrifugal turbines have the potential to compete with axial or radial-inflow turbines in a relevant range of applications, and are now receiving scientific as well as industrial recognition. However, the non-conventional character of the centrifugal turbine layout, combined with the typical effects induced by the use of organic fluids, leads to challenging design difficulties. For this reason, the design of optimal blades for centrifugal ORC turbines demands the application of high-fidelity computational tools. In this work, the optimal aerodynamic design is achieved by applying a non-intrusive, gradient-free, CFD-based method implemented in the in-house software FORMA (Fluid-dynamic Opti-mizeR for turboMachinery Aerofoils), specifically developed for the shape optimization of turbomachinery profiles. FORMA was applied to optimize the shape of the stator and the rotor of a transonic centrifugal turbine stage, which exhibits a significant radial effect, high aerodynamic loading, and severe non-ideal gas effects. The optimization of the single blade rows allows improving considerably the stage performance, with respect to a baseline geometric configuration constructed with classical aerodynamic methods. Furthermore, time-resolved simulations of the coupled stator-rotor configuration shows that the optimization allows to reduce considerably the unsteady stator-rotor interaction and, thus, the aerodynamic forcing acting on the blades

    Development of a Background-Oriented Schlieren Technique with Telecentric Lenses for Supersonic Flow

    Get PDF
    Background oriented schlieren (BOS) is a quantitative optical technique which exploits light deflection occurring in non-homogeneous transparent media. It allows to indirectly measure the density gradients by analysing the apparent displacement of features of a background pattern when imaged through the investigated flow. Thanks to its simple set-up and to the consolidated data reduction technique based on cross-correlation algorithms the BOS technique has progressively attracted the interest of the researchers. In this work a BOS system using a telecentric lens system has been set up in order to improve measurement accuracy and to avoid 3D effects arising from using conventional entocentric lenses. The design of the telecentric lens system is reported along with an analysis of its performance in term of spatial resolution. Some preliminary tests on a supersonic flows are also reported

    Preliminary characterization of an expanding flow of siloxane vapor MDM

    Get PDF
    The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases state-of-the-art thermodynamic models were applied

    Wake Development in Floating Wind Turbines: New Insights and Open Dataset from Wind Tunnel Experiments

    Get PDF
    Floating offshore wind turbines represent a promising new technology in offshore renewables, but they are still in their early stages with few prototypes and limited performance data. As part of the NETTUNO research project, this study examines how platform movement affects the aerodynamics of a floating wind turbine rotor and connects its load response to the evolution of its wake. Wind tunnel experiments were performed on a 1:75 scale model wind turbine subjected to platform movements in various directions. Collected data includes measurements of rotor loads and wind speed in the wake of the wind turbine at different downstream distances from the rotor. The study provides a detailed analysis of a selected portion of the data, while the entire dataset is accessible via an open repository. Results indicate that surge and pitch motions induce periodic thrust fluctuations, leading to variations in near wake velocity that peak at a reduced frequency of 0.6. Yaw motion causes oscillations in the yaw moment and lateral wake meandering. Combined surge and sway motions result in skewed apparent wind speed, causing both wake velocity fluctuations and lateral meandering. Increased turbulence intensity near the wake center suggests enhanced wake mixing and potentially a faster recovery beyond a distance of 5 diameters downstream. New experimental data may serve as a foundation for validating numerical simulation tools, while the main findings of the study are thought to provide valuable knowledge for optimizing future large-scale floating wind farms

    Experimental evidence of non-ideal compressible effects in expanding flow of a high molecular complexity vapor

    Get PDF
    Supersonic expansions of a molecularly complex vapor occurring within the non-ideal thermodynamic region in the close proximity of liquid-vapor saturation curve were characterized experimentally for the first time. Results for two planar converging–diverging nozzles in the adapted regime and at different inlet conditions, from highly non-ideal to dilute gas state, are reported. Measurements of upstream total pressure and temperature are performed in the plenum ahead of the nozzle, while static pressure and supersonic Mach number measurements are carried out along the nozzle centerline. The investigated expansions are of interest for both fundamental research on non-ideal compressible flows and industrial applications, especially in the energy field. Siloxane MDM (octamethyltrisiloxane, C8H24O2Si3), a high molecular complexity organic compound, is used. Local pressure ratio P/ PTand Mach number M measurements display a dependence on the inlet total state, a typical non-ideal feature different from dilute gas conditions

    I.S.Mu.L.T. Achilles Tendon Ruptures Guidelines

    Get PDF
    This work provides easily accessible guidelines for the diagnosis, treatment and rehabilitation of Achilles tendon ruptures. These guidelines could be considered as recommendations for good clinical practice developed through a process of systematic review of the literature and expert opinion, to improve the quality of care for the individual patient and rationalize the use of resources. This work is divided into two sessions: 1) questions about hot topics; 2) answers to the questions following Evidence Based Medicine principles. Despite the frequency of the pathology andthe high level of satisfaction achieved in treatment of Achilles tendon ruptures, a global consensus is lacking. In fact, there is not a uniform treatment and rehabilitation protocol used for Achilles tendon ruptures
    • …
    corecore