15,781 research outputs found
Disordered two-dimensional superconductors: roles of temperature and interaction strength
We have considered the half-filled disordered attractive Hubbard model on a
square lattice, in which the on-site attraction is switched off on a fraction
of sites, while keeping a finite on the remaining ones. Through Quantum
Monte Carlo (QMC) simulations for several values of and , and for system
sizes ranging from to , we have calculated the
configurational averages of the equal-time pair structure factor , and,
for a more restricted set of variables, the helicity modulus, , as
functions of temperature. Two finite-size scaling {\it ansatze} for have
been used, one for zero-temperature and the other for finite temperatures. We
have found that the system sustains superconductivity in the ground state up to
a critical impurity concentration, , which increases with , at least up
to U=4 (in units of the hopping energy). Also, the normalized zero-temperature
gap as a function of shows a maximum near , for . Analyses of the helicity modulus and of the pair structure factor
led to the determination of the critical temperature as a function of , for
4 and 6: they also show maxima near , with the highest
increasing with in this range. We argue that, overall, the observed
behavior results from both the breakdown of CDW-superconductivity degeneracy
and the fact that free sites tend to "push" electrons towards attractive sites,
the latter effect being more drastic at weak couplings.Comment: 9 two-column pages, 14 figures, RevTe
Immunization and Aging: a Learning Process in the Immune Network
The immune system can be thought as a complex network of different
interacting elements. A cellular automaton, defined in shape-space, was
recently shown to exhibit self-regulation and complex behavior and is,
therefore, a good candidate to model the immune system. Using this model to
simulate a real immune system we find good agreement with recent experiments on
mice. The model exhibits the experimentally observed refractory behavior of the
immune system under multiple antigen presentations as well as loss of its
plasticity caused by aging.Comment: 4 latex pages, 3 postscript figures attached. To be published in
Physical Review Letters (Tentatively scheduled for 5th Oct. issue
Recommended from our members
Understanding the coach-coachee-client relationship: a conceptual framework for executive coaching
Objectives: There is a need for a more comprehensive understanding of how coaching processes psychologically operate. This paper presents the findings from a study aimed to characterise the coaching process experience and to identify how specific experiences contribute to coaching outcomes. Design: A qualitative design was adopted. Data was analysed by Interpretative Phenomenological Analysis (Smith, 2008). Method: Data was collected from 10 participants, this included coaches (N = 4), coachees (N = 5) and one commissioner, three times along the coaching process. A total of 30 interviews were undertaken. Findings: Coaching outcomes can be generated by three essential mechanisms: Projection of Future Self; Perspectivation of Present Self; and Confirmation of Past/Present Self. Each mechanism’s name represents a particular effect on coachee’s self and may evolve diverse coaching behaviours. Although they all can be actively managed to generate sustainability of outcomes, each mechanism tends to contribute differently to that sustainability. Conclusion: The study provides a comprehensive understanding of the different methodological and experiential ingredients of the coaching process and its implications. While most coaching research is focused on identifying coaching results based on a retrospective analysis, this is one of the first studies accompanying longitudinally the coaching process and capturing an integrative understanding of its dynamics. Moreover, the study provides evidence of how coaching can differently deliver sustainable outcomes and be used as a valuable developmental tool in organisations. The study contributes to our understanding of theory building and raises questions for further research on the uniqueness of coaching interventions
Disorder Induced Localized States in Graphene
We consider the electronic structure near vacancies in the half-filled
honeycomb lattice. It is shown that vacancies induce the formation of localized
states. When particle-hole symmetry is broken, localized states become
resonances close to the Fermi level. We also study the problem of a finite
density of vacancies, obtaining the electronic density of states, and
discussing the issue of electronic localization in these systems. Our results
also have relevance for the problem of disorder in d-wave superconductors.Comment: Replaced with published version. 4 pages, 4 figures. Fig. 1 was
revise
Phenomenological study of the electronic transport coefficients of graphene
Using a semi-classical approach and input from experiments on the
conductivity of graphene, we determine the electronic density dependence of the
electronic transport coefficients -- conductivity, thermal conductivity and
thermopower -- of doped graphene. Also the electronic density dependence of the
optical conductivity is obtained. Finally we show that the classical Hall
effect (low field) in graphene has the same form as for the independent
electron case, characterized by a parabolic dispersion, as long as the
relaxation time is proportional to the momentum.Comment: 4 pages, 1 figur
Localized states at zigzag edges of bilayer graphene
We report the existence of zero energy surface states localized at zigzag
edges of bilayer graphene. Working within the tight-binding approximation we
derive the analytic solution for the wavefunctions of these peculiar surface
states. It is shown that zero energy edge states in bilayer graphene can be
divided into two families: (i) states living only on a single plane, equivalent
to surface states in monolayer graphene; (ii) states with finite amplitude over
the two layers, with an enhanced penetration into the bulk. The bulk and
surface (edge) electronic structure of bilayer graphene nanoribbons is also
studied, both in the absence and in the presence of a bias voltage between
planes.Comment: 4 pages, 5 figure
- …