44 research outputs found

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run

    Get PDF
    The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary block hole events previously reported in GWTC-1. If the 8 additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects \geq 3M_\odot) is increased compared to GWTC-2, with total masses from \sim 14M_\odot for GW190924_021846 to \sim 182M_\odot for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that 2 of the 8 new events have effective inspiral spins \chi_\mathrm{eff} &gt; 0 (at 90\% credibility), while no binary is consistent with \chi_\mathrm{eff} \lt 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe

    Luteinizing hormone inhibits Fas-induced apoptosis in ovarian surface epithelial cell lines

    No full text
    Gonadotrophins including LH have been suggested to play an important role in the etiology of epithelial ovarian cancers. The goal of the present study was to obtain more insight in the mechanism of gonadotrophin action on ovarian surface epithelium (OSE) cells. As the Fas system is known to be a major player in the regulation of the process of apoptosis in the ovary, we investigated whether LH interfered with Fas-induced apoptosis in the human OSE cancer cell lines HEY and Caov-3. Activation of Fas receptor by an agonistic anti-Fas receptor antibody induced apoptosis, as was evaluated by caspase-3 activation, poly(ADP-ribose) polymerase fragmentation, phosphatidylserine externalization and morphological changes characteristic of apoptosis. Co-treatment with LH reduced the number of apoptotic cells following activation of Fas in a transient manner, while LH by itself did not affect apoptosis or cell proliferation. The anti-apoptotic effect of LH could be mimicked by the membrane-permeable cAMP analog 8-(4-chlorophenylthio) cAMP (8-CPT-cAMP), and blocked by H89, a specific inhibitor of protein kinase A (PKA). In conclusion, these findings suggest that LH protects HEY cells against Fas-induced apoptosis through a signaling cascade involving PKA. Although it is plausible that in vivo LH might also enhance OSE tumor growth through inhibition of apoptosis, further research is necessary to confirm this hypothesis

    Luteinizing hormone inhibits Fas-induced apoptosis in ovarian surface epithelial cell lines

    No full text
    Gonadotrophins including LH have been suggested to play an important role in the etiology of epithelial ovarian cancers. The goal of the present study was to obtain more insight in the mechanism of gonadotrophin action on ovarian surface epithelium (OSE) cells. As the Fas system is known to be a major player in the regulation of the process of apoptosis in the ovary, we investigated whether LH interfered with Fas-induced apoptosis in the human OSE cancer cell lines HEY and Caov-3. Activation of Fas receptor by an agonistic anti-Fas receptor antibody induced apoptosis, as was evaluated by caspase-3 activation, poly(ADP-ribose) polymerase fragmentation, phosphatidylserine externalization and morphological changes characteristic of apoptosis. Co-treatment with LH reduced the number of apoptotic cells following activation of Fas in a transient manner, while LH by itself did not affect apoptosis or cell proliferation. The anti-apoptotic effect of LH could be mimicked by the membrane-permeable cAMP analog 8-(4-chlorophenylthio) cAMP (8-CPT-cAMP), and blocked by H89, a specific inhibitor of protein kinase A (PKA). In conclusion, these findings suggest that LH protects HEY cells against Fas-induced apoptosis through a signaling cascade involving PKA. Although it is plausible that in vivo LH might also enhance OSE tumor growth through inhibition of apoptosis, further research is necessary to confirm this hypothesis

    Irregularly shaped inclusion cysts display increased expression of Ki67, Fas, Fas ligand, and procaspase-3 but relatively little active caspase-3

    No full text
    Human ovarian cancers are thought to arise from sequestered ovarian surface epithelial (OSE) cells that line the wall of inclusion cysts. Nevertheless, the early events toward neoplasia are not well understood. In this study, immunoreactivity for apoptotic proteins in human OSE of control and tumor ovarian sections was examined. Ki67, a marker for cell proliferation, was generally absent in the flat-to-cuboidal OSE cells on the ovarian surface and in regularly shaped inclusion cysts. Fas, Fas ligand, and caspase-3, components of the apoptotic pathway, were also largely absent. Ki67, Fas, Fas ligand, and procaspase-3 expression, though not active caspase-3 expression, was more frequently observed in epithelial cells lining irregularly shaped inclusion cysts, particularly in the columnar and Müllerian-like OSE cell types that resembled ovarian tumor OSE cells. Immunoreactivity for these factors as well as active caspase-3 was found frequently in ovarian tumors. We postulate that the appearance of the Fas system and its related proteins in sequestered columnar OSE cells of irregularly shaped inclusion cysts may contribute to balance cell growth with cell death, although little active caspase-3 expression was observed. Further studies are required to identify whether inhibition of apoptosis in inclusion cysts is an early event in ovarian carcinogenesis
    corecore