2,177 research outputs found

    Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    Full text link
    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., ITG turbulence) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau-damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the "anti-phase-mixing" effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wave-number space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the "critical balance" between linear and nonlinear timescales (which for high Hermite moments splits into two thresholds, one demarcating the wave-number region where phase mixing predominates, the other where plasma echo does).Comment: 45 pages (single-column), 3 figures, replaced with version published in JP

    Resolving velocity space dynamics in continuum gyrokinetics

    Full text link
    Many plasmas of interest to the astrophysical and fusion communities are weakly collisional. In such plasmas, small scales can develop in the distribution of particle velocities, potentially affecting observable quantities such as turbulent fluxes. Consequently, it is necessary to monitor velocity space resolution in gyrokinetic simulations. In this paper, we present a set of computationally efficient diagnostics for measuring velocity space resolution in gyrokinetic simulations and apply them to a range of plasma physics phenomena using the continuum gyrokinetic code GS2. For the cases considered here, it is found that the use of a collisionality at or below experimental values allows for the resolution of plasma dynamics with relatively few velocity space grid points. Additionally, we describe implementation of an adaptive collision frequency which can be used to improve velocity space resolution in the collisionless regime, where results are expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma

    Rotation and Neoclassical Ripple Transport in ITER

    Full text link
    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria with toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver (SFINCS). These calculations fully account for ErE_r, flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of ErE_r, we study its behavior over a plausible range of ErE_r. We estimate the toroidal flow, and hence ErE_r, using a semi-analytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV from the ∣n∣=18\rvert n \rvert = 18 ripple dominates that from lower nn perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts, finding appreciable differences only for superbanana-plateau transport at small ErE_r. We find the scaling of calculated NTV torque with ripple magnitude to indicate that ripple-trapping may be a significant mechanism for NTV in ITER. The computed NTV torque without ferritic components is comparable in magnitude to the NBI and intrinsic turbulent torques and will likely damp rotation, but the NTV torque is significantly reduced by the planned ferritic inserts

    Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    Full text link
    The first three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k−2.8k^{-2.8} as observed in \emph{in situ} spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic \Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at sub-ion-Larmor radius scales, which provides the first evidence of the ion entropy cascade in an electromagnetic turbulence simulation.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    A Weakened Cascade Model for Turbulence in Astrophysical Plasmas

    Full text link
    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.Comment: 20 pages, 8 figures, accepted for publication in Physics of Plasma
    • …
    corecore