7,627 research outputs found

    Potential uses for bracken (Pteridium aquilinum (L.) Kuhn) in organic agrculture

    Get PDF
    Bracken is a weed species due to its toxic nature and adverse effects on agriculture and ecology. This poster reviews research into historical uses for fronds and litter harvested as part of organically approved control methods. The use of bracken as an over winter mulch reduced losses of nitrogen and potassium from bare soil and maintained soil temperatures. Bracken litter was found to be a viable biofuel, with a calorific value comparable to wood and low ash and alkali metal contents. The contents of frond ash were investigated, with high concentrations of potassium found giving them a value as organic fertiliser. The addition of frond ash to soil significantly increased clover growth and number of nodules. The addition of frond ash to soil significantly increased the yield of saleable main crop potatoes. These finding have shown that bracken has a value especially within organic agriculture

    Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    Get PDF
    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources

    Anomalous vortex ring velocities induced by thermally-excited Kelvin waves and counterflow effects in superfluids

    Full text link
    Dynamical counterflow effects on vortex evolution under the truncated Gross-Pitaevskii equation are investigated. Standard longitudinal mutual friction effects are produced and a dilatation of vortex rings is obtained at large counterflow. A strong temperature-dependent anomalous slowdown of vortex rings is observed and attributed to the presence of thermally exited Kelvin waves. This generic effect of finite-temperature superfluids is estimated using energy equipartition and orders of magnitude are given for weakly interacting Bose-Einstein condensates and superfluid 4He^4{\rm He}

    Stationary and non-stationary fluid flow of a Bose-Einstein condensate through a penetrable barrier

    Full text link
    We experimentally study the fluid flow induced by a broad, penetrable barrier moving through an elongated dilute gaseous Bose-Einstein condensate. The barrier is created by a laser beam swept through the condensate, and the resulting dipole potential can be either attractive or repulsive. We examine both cases and find regimes of stable and unstable fluid flow: At slow speeds of the barrier, the fluid flow is stationary due to the superfluidity of the condensate. At intermediate speeds, we observe a non-stationary regime in which the condensate gets filled with dark solitons. At faster speeds, soliton formation completely ceases and a remarkable absence of excitation in the condensate is seen again.Comment: 4 pages, 4 figure

    An abstract formulation of the concept of entropy

    Get PDF
    Entropy is presented as a concave function relating two sets of quantities called densities and field. It allows a simple classification of the standard relations of classical thermodynamics and yields a simple derivation of the conditions for concavity of the entropy function. It also allows a formal derivation of the equations of fluid motion. Dissipation, mixtures, and phase changes may also be included in the theory in a natural manner

    Direct measurement of quantum phase gradients in superfluid 4He flow

    Full text link
    We report a new kind of experiment in which we generate a known superfluid velocity in a straight tube and directly determine the phase difference across the tube's ends using a superfluid matter wave interferometer. By so doing, we quantitatively verify the relation between the superfluid velocity and the phase gradient of the condensate macroscopic wave function. Within the systematic error of the measurement (~10%) we find v_s=(hbar/m_4)*(grad phi)

    Some exact solutions in moving finite elements

    Get PDF
    It is shown that when the moving finite elements are used on a number of parabolic problems there are steady-state, stationary, similarity, or travelling-wave solutions that can be found numerically

    Energy Loss from Reconnection with a Vortex Mesh

    Full text link
    Experiments in superfluid 4He show that at low temperatures, energy dissipation from moving vortices is many orders of magnitude larger than expected from mutual friction. Here we investigate other mechanisms for energy loss by a computational study of a vortex that moves through and reconnects with a mesh of small vortices pinned to the container wall. We find that such reconnections enhance energy loss from the moving vortex by a factor of up to 100 beyond that with no mesh. The enhancement occurs through two different mechanisms, both involving the Kelvin oscillations generated along the vortex by the reconnections. At relatively high temperatures the Kelvin waves increase the vortex motion, leading to more energy loss through mutual friction. As the temperature decreases, the vortex oscillations generate additional reconnection events between the moving vortex and the wall, which decrease the energy of the moving vortex by transfering portions of its length to the pinned mesh on the wall.Comment: 9 pages, 10 figure

    Thermodynamic inequalities in superfluid

    Full text link
    We investigate general thermodynamic stability conditions for the superfluid. This analysis is performed in an extended space of thermodynamic variables containing (along with the usual thermodynamic coordinates such as pressure and temperature) superfluid velocity and momentum density. The stability conditions lead to thermodynamic inequalities which replace the Landau superfluidity criterion at finite temperatures.Comment: 7 pages, 1 figur
    • …
    corecore