7,931 research outputs found
Prevention of pressure build-up in electrochemical cells Patent
Preventing pressure buildup in electrochemical cells by reacting palladium oxide with evolved hydroge
Stationary and non-stationary fluid flow of a Bose-Einstein condensate through a penetrable barrier
We experimentally study the fluid flow induced by a broad, penetrable barrier
moving through an elongated dilute gaseous Bose-Einstein condensate. The
barrier is created by a laser beam swept through the condensate, and the
resulting dipole potential can be either attractive or repulsive. We examine
both cases and find regimes of stable and unstable fluid flow: At slow speeds
of the barrier, the fluid flow is stationary due to the superfluidity of the
condensate. At intermediate speeds, we observe a non-stationary regime in which
the condensate gets filled with dark solitons. At faster speeds, soliton
formation completely ceases and a remarkable absence of excitation in the
condensate is seen again.Comment: 4 pages, 4 figure
Final-State Interactions in the Superscaling Analysis of Neutral-Current Quasielastic Neutrino Scattering
Effects of strong final-state interactions in the superscaling properties of
neutral-current quasielastic neutrino cross sections are investigated using the
Relativistic Impulse Approximation as guidance. First- and second-kind scaling
are analyzed for neutrino beam energies ranging from 1 to 2 GeV for the cases
of 12C, 16O and 40Ca. Different detection angles of the outgoing nucleon are
considered in order to sample various nucleon energy regimes. Scaling of the
second kind is shown to be very robust. Validity of first-kind scaling is found
to be linked to the kinematics of the process. Superscaling still prevails even
in the presence of very strong final-state interactions, provided that some
kinematical restrains are kept, and the conditions under which superscaling can
be applied to predict neutral-current quasielastic neutrino scattering are
determined.Comment: 39 pages, 16 figures, accepted for publication in Phys. Rev.
Friction factors for smooth pipe flow
Friction factor data from two recent pipe flow experiments are combined to provide a comprehensive picture of the friction factor variation for Reynolds numbers from 10 to 36,000,000
Spontaneous squeezing of a vortex in an optical lattice
We study the equilibrium states of a vortex in a Bose-Einstein condensate in
a one-dimensional optical lattice. We find that quantum effects can be
important and that it is even possible for the vortex to be strongly squeezed,
which reflects itself in a different quantum mechanical uncertainty of the
vortex position in two orthogonal directions. The latter is observable by
measuring the atomic density after an expansion of the Bose-Einstein condensate
in the lattice.Comment: 8 pages, 3 figures, more details added, some new citation
Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering
Two-particle two-hole contributions to electromagnetic response functions are
computed in a fully relativistic Fermi gas model. All one-pion exchange
diagrams that contribute to the scattering amplitude in perturbation theory are
considered, including terms for pionic correlations and meson-exchange currents
(MEC). The pionic correlation terms diverge in an infinite system and thus are
regularized by modification of the nucleon propagator in the medium to take
into account the finite size of the nucleus. The pionic correlation
contributions are found to be of the same order of magnitude as the MEC.Comment: 14 pages, 15 figure
Coherent cross-talk and parametric driving of matter-wave vortices
We show that the interaction between vortices and sound waves in atomic
Bose-Einstein condensates can be elucidated in a double-well trap: with one
vortex in each well, the sound emitted by each precessing vortex can be driven
into the opposing vortex (if of the same polarity). This cross-talk leads to a
periodic exchange of energy between the vortices which is long-range and highly
efficient. The increase in vortex energy (obtained by numerical simulations of
the Gross-Pitaevskii equation) is significant and experimentally observable as
a migration of the vortex to higher density over just a few precession periods.
Similar effects can be controllably engineered by introducing a precessing
localised obstacle into one well as an artificial generator of sound, thereby
demonstrating the parametric driving of energy into a vortex.Comment: 12 pages, 13 figure
Superscaling of non-quasielastic electron-nucleus scattering
The present study is focused on the superscaling behavior of electron-nucleus
cross sections in the region lying above the quasielastic peak, especially the
region dominated by electroexcitation of the Delta. Non-quasielastic cross
sections are obtained from all available high-quality data for Carbon 12 by
subtracting effective quasielastic cross sections based on the superscaling
hypothesis. These residuals are then compared with results obtained within a
scaling-based extension of the relativistic Fermi gas model, including an
investigation of violations of scaling of the first kind in the region above
the quasielastic peak. A way potentially to isolate effects related to
meson-exchange currents by subtracting both impulsive quasielastic and
impulsive inelastic contributions from the experimental cross sections is also
presented.Comment: RevTeX, 34 pages including 11 figure
- …