7,931 research outputs found

    Prevention of pressure build-up in electrochemical cells Patent

    Get PDF
    Preventing pressure buildup in electrochemical cells by reacting palladium oxide with evolved hydroge

    Stationary and non-stationary fluid flow of a Bose-Einstein condensate through a penetrable barrier

    Full text link
    We experimentally study the fluid flow induced by a broad, penetrable barrier moving through an elongated dilute gaseous Bose-Einstein condensate. The barrier is created by a laser beam swept through the condensate, and the resulting dipole potential can be either attractive or repulsive. We examine both cases and find regimes of stable and unstable fluid flow: At slow speeds of the barrier, the fluid flow is stationary due to the superfluidity of the condensate. At intermediate speeds, we observe a non-stationary regime in which the condensate gets filled with dark solitons. At faster speeds, soliton formation completely ceases and a remarkable absence of excitation in the condensate is seen again.Comment: 4 pages, 4 figure

    Final-State Interactions in the Superscaling Analysis of Neutral-Current Quasielastic Neutrino Scattering

    Get PDF
    Effects of strong final-state interactions in the superscaling properties of neutral-current quasielastic neutrino cross sections are investigated using the Relativistic Impulse Approximation as guidance. First- and second-kind scaling are analyzed for neutrino beam energies ranging from 1 to 2 GeV for the cases of 12C, 16O and 40Ca. Different detection angles of the outgoing nucleon are considered in order to sample various nucleon energy regimes. Scaling of the second kind is shown to be very robust. Validity of first-kind scaling is found to be linked to the kinematics of the process. Superscaling still prevails even in the presence of very strong final-state interactions, provided that some kinematical restrains are kept, and the conditions under which superscaling can be applied to predict neutral-current quasielastic neutrino scattering are determined.Comment: 39 pages, 16 figures, accepted for publication in Phys. Rev.

    Friction factors for smooth pipe flow

    Get PDF
    Friction factor data from two recent pipe flow experiments are combined to provide a comprehensive picture of the friction factor variation for Reynolds numbers from 10 to 36,000,000

    Spontaneous squeezing of a vortex in an optical lattice

    Full text link
    We study the equilibrium states of a vortex in a Bose-Einstein condensate in a one-dimensional optical lattice. We find that quantum effects can be important and that it is even possible for the vortex to be strongly squeezed, which reflects itself in a different quantum mechanical uncertainty of the vortex position in two orthogonal directions. The latter is observable by measuring the atomic density after an expansion of the Bose-Einstein condensate in the lattice.Comment: 8 pages, 3 figures, more details added, some new citation

    Pionic correlations and meson-exchange currents in two-particle emission induced by electron scattering

    Get PDF
    Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, including terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.Comment: 14 pages, 15 figure

    Coherent cross-talk and parametric driving of matter-wave vortices

    Full text link
    We show that the interaction between vortices and sound waves in atomic Bose-Einstein condensates can be elucidated in a double-well trap: with one vortex in each well, the sound emitted by each precessing vortex can be driven into the opposing vortex (if of the same polarity). This cross-talk leads to a periodic exchange of energy between the vortices which is long-range and highly efficient. The increase in vortex energy (obtained by numerical simulations of the Gross-Pitaevskii equation) is significant and experimentally observable as a migration of the vortex to higher density over just a few precession periods. Similar effects can be controllably engineered by introducing a precessing localised obstacle into one well as an artificial generator of sound, thereby demonstrating the parametric driving of energy into a vortex.Comment: 12 pages, 13 figure

    Superscaling of non-quasielastic electron-nucleus scattering

    Get PDF
    The present study is focused on the superscaling behavior of electron-nucleus cross sections in the region lying above the quasielastic peak, especially the region dominated by electroexcitation of the Delta. Non-quasielastic cross sections are obtained from all available high-quality data for Carbon 12 by subtracting effective quasielastic cross sections based on the superscaling hypothesis. These residuals are then compared with results obtained within a scaling-based extension of the relativistic Fermi gas model, including an investigation of violations of scaling of the first kind in the region above the quasielastic peak. A way potentially to isolate effects related to meson-exchange currents by subtracting both impulsive quasielastic and impulsive inelastic contributions from the experimental cross sections is also presented.Comment: RevTeX, 34 pages including 11 figure
    corecore