5,180 research outputs found

    Finite Temperature Time-Dependent Effective Theory For The Goldstone Field In A BCS-Type Superfluid

    Full text link
    We extend to finite temperature the time-dependent effective theory for the Goldstone field (the phase of the pair field) θ \theta which is appropriate for a superfluid containing one species of fermions with s-wave interactions, described by the BCS Lagrangian. We show that, when Landau damping is neglected, the effective theory can be written as a local time-dependent non-linear Schr\"{o}dinger Lagrangian (TDNLSL) which preserves the Galilean invariance of the zero temperature effective theory and is identified with the superfluid component. We then calculate the relevant Landau terms which are non-local and which destroy the Galilean invariance. We show that the retarded θ\theta-propagator (in momentum space) can be well represented by two poles in the lower-half frequency plane, describing damping with a predicted temperature, frequency and momentum dependence. It is argued that the real parts of the Landau terms can be approximately interpreted as contributing to the normal fluid component.Comment: 25 pages, 5 figures, references added, Introduction rewritte

    Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment

    Full text link
    Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding was termed the recognition well. We find that there is recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations, and consider more rigorously the optimization of the orientations of the fragments about their long axes. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. However when torsional flexibility of the DNA molecules is introduced, we find excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures in main text, 3 figures in supplmental. To be submitted to Journa

    Infrared divergence in QED3_3 at finite temperature

    Full text link
    We consider various ways of treating the infrared divergence which appears in the dynamically generated fermion mass, when the transverse part of the photon propagator in N flavour QED3QED_{3} at finite temperature is included in the Matsubara formalism. This divergence is likely to be an artefact of taking into account only the leading order term in the 1N1 \over N expansion when we calculate the photon propagator and is handled here phenomenologically by means of an infrared cutoff. Inserting both the longitudinal and the transverse part of the photon propagator in the Schwinger-Dyson equation we find the dependence of the dynamically generated fermion mass on the temperature and the cutoff parameters. It turns out that consistency with certain statistical physics arguments imposes conditions on the cutoff parameters. For parameters in the allowed range of values we find that the ratio r=2Mass(T=0)/criticaltemperaturer=2*Mass(T=0)/critical temperature is approximately 6, consistently with previous calculations which neglected the transverse photon contribution.Comment: 37 pages, 12 figures, typos corrected, references added, Introduction rewritte

    3D Computer Modeling Analysis of the Surface Area and Thread Volume of the Common Sliding Hip Screw

    Get PDF
    Introduction: The Sliding Hip Screw (SHS) is a tried and tested method used to treat intertrochanteric hip fractures. Lag screw cut-out is a major complication of SHS fixation and accepted risk factors are often re-evaluated. We aim to demonstrate a new hypothesis of cut-out using 3D reconstructive modelling. We propose that the risk of cut-out is much greater in lag screws with a smaller thread surface area and larger thread volume. Method: The four commonly used SHS lag screw systems (Biomet, Synthes, Stryker and Smith & Nephew) were CT scanned and the images processed and turned into 3D computer models for further analysis. Results: There were significan differences between the surface area and thread volumes of the lag screws between manufacturers ranging from 67.0mm2 - 347.4 mm2 and 166.376mm3 - 225.687mm3 respectively. Discussion: Assuming the consistency of bone is equal, we propose that the risk of cut-out is much greater in lag screws with a smaller surface area to thread volume ratio (SA:TV). The reamer design of lag screws is also discussed. Conclusion: Although there are many non-modifiable risk factors that contribute to screw cut-out, selecting the right raw materials for SHS fixation will have a favorable impact on the overall risk

    Role of spinon and spinon singlet pair excitations on phase transitions in dwaved-wave superconductors

    Full text link
    We examine the roles of massless Dirac spinon and spin singlet pair excitations on the phase transition in dwaved-wave superconductors. Although the massless spinon excitations in the presence of the spin singlet pair excitations do not alter the nature of the phase transition at T=0T = 0, that is, the XY universality class, they are seen to induce an additional attractive interaction potential between vortices, further stabilizing vortex-antivortex pairs at low temperature for lightly doped high TcT_c samples.Comment: 5 pages, 1 figur

    Community acquired Panton-Valentine Leukocidin (PVL) positive Methicilin Resistant Staphylococcal aureus cerebral abscess in an 11-month old boy: a case study.

    Get PDF
    BACKGROUND: Brain abscess are uncommon childhood infection. Brain abscess caused by Panton-Valentine Leukocidin positive Community acquired Methicillin Resistant Staphylococcal aureus have never been reported in the United Kingdom. CASE PRESENTATION: We report a case of a previously well 11-month old boy of Indian origin who developed a parietal lobe abscess from PVL positive CA-MRSA. CONCLUSION: This case is one of the few described cases of brain abscess caused by PVL CA-MRSA in children. The unusual (insidious) presentation, the absence of a clear staphylococcal focus and the unexpected finding of a CA-MRSA in this patient highlight the challenges of managing such cases in clinical settings and the potential future risk to public health
    corecore