7,717 research outputs found
Frenkel Excitons in Random Systems With Correlated Gaussian Disorder
Optical absorption spectra of Frenkel excitons in random one-dimensional
systems are presented. Two models of inhomogeneous broadening, arising from a
Gaussian distribution of on-site energies, are considered. In one case the
on-site energies are uncorrelated variables whereas in the second model the
on-site energies are pairwise correlated (dimers). We observe a red shift and a
broadening of the absorption line on increasing the width of the Gaussian
distribution. In the two cases we find that the shift is the same, within our
numerical accuracy, whereas the broadening is larger when dimers are
introduced. The increase of the width of the Gaussian distribution leads to
larger differences between uncorrelated and correlated disordered models. We
suggest that this higher broadening is due to stronger scattering effects from
dimers.Comment: 9 pages, REVTeX 3.0, 3 ps figures. To appear in Physical Review
Nonequilibrium critical dynamics of the three-dimensional gauge glass
We study the non-equilibrium aging behavior of the gauge glass model in three
dimensions at the critical temperature. We perform Monte Carlo simulations with
a Metropolis update, and correlation and response functions are calculated for
different waiting times. We obtain a multiplicative aging scaling of the
correlation and response functions, calculating the aging exponent and the
nonequilibrium autocorrelation decay exponent . We also analyze
the fluctuation-dissipation relationship at the critical temperature, obtaining
the critical fluctuation-dissipation ratio . By comparing our results
with the aging scaling reported previously for a model of interacting flux
lines in the vortex glass regime, we found that the exponents for both models
are very different.Comment: 7 pages, 4 figures. Manuscript accpeted for publication in PR
FIBONACCI SUPERLATTICES OF NARROW-GAP III-V SEMICONDUCTORS
We report theoretical electronic structure of Fibonacci superlattices of
narrow-gap III-V semiconductors. Electron dynamics is accurately described
within the envelope-function approximation in a two-band model.
Quasiperiodicity is introduced by considering two different III-V semiconductor
layers and arranging them according to the Fibonacci series along the growth
direction. The resulting energy spectrum is then found by solving exactly the
corresponding effective-mass (Dirac-like) wave equation using tranfer-matrix
techniques. We find that a self-similar electronic spectrum can be seen in the
band structure. Electronic transport properties of samples are also studied and
related to the degree of spatial localization of electronic envelope-functions
via Landauer resistance and Lyapunov coefficient. As a working example, we
consider type II InAs/GaSb superlattices and discuss in detail our results in
this system.Comment: REVTeX 3.0, 16 pages, 8 figures available upon request. To appear in
Semiconductor Science and Technolog
Fluorescence decay in aperiodic Frenkel lattices
We study motion and capture of excitons in self-similar linear systems in
which interstitial traps are arranged according to an aperiodic sequence,
focusing our attention on Fibonacci and Thue-Morse systems as canonical
examples. The decay of the fluorescence intensity following a broadband pulse
excitation is evaluated by solving the microscopic equations of motion of the
Frenkel exciton problem. We find that the average decay is exponential and
depends only on the concentration of traps and the trapping rate. In addition,
we observe small-amplitude oscillations coming from the coupling between the
low-lying mode and a few high-lying modes through the topology of the lattice.
These oscillations are characteristic of each particular arrangement of traps
and they are directly related to the Fourier transform of the underlying
lattice. Our predictions can be then used to determine experimentally the
ordering of traps.Comment: REVTeX 3.0 + 3PostScript Figures + epsf.sty (uuencoded). To appear in
Physical Review
- …