28 research outputs found

    Seriously personal:The reasons that motivate entrepreneurs to address climate change

    Get PDF
    This is the author accepted manuscript. The final version is freely available from Springer Verlag via the DOI in this record.Scholars increasingly argue that entrepreneurs and their small- and medium-sized enterprises should play a central role in reducing the rate and magnitude of climate change. However, evidence suggests that while some entrepreneurs recognize their crucial role in addressing climate change, most do not. Why some entrepreneurs nevertheless concern themselves with climate change has largely been overlooked. Some initial work in this area tentatively suggests that these entrepreneurs may engage with climate change because of their personal values, which either focus on financial or socio-ecological reasons, or a combination of both. Yet, it is unclear if all for-profit entrepreneurs engage with climate change for the same reasons, or if indeed their motivations vary across business types. Over a period of four years, we examined entrepreneurs’ motivations to engage with climate change through a variety of qualitative research methods. Our findings illustrate how entrepreneurs who address climate change have motivations specific to their business activity/industry and level of maturity. In each instance, we link these motivations to distinct conceptualizations of time and place. We contend that, through a more differentiated understanding of entrepreneurial motivations, policy-makers can draft climate change-related policies tailored to entrepreneurial needs. Policies could both increase the number of entrepreneurs who already engage in climate change mitigation and leverage the impact of those entrepreneurs already mitigating climate change.This study was funded by the European Social Fund (09099NCO5). We acknowledge with thanks the participation of the entrepreneurs and the support of Business Leaders for Low Carbon, Cornwall Council, and Cornwall Sustainable Tourism Project. The authors wish to thank Professor John Amis, Professor Kenneth Amaeshi and the anonymous reviewers who provided useful feedback on earlier versions of the article

    Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A

    Get PDF
    INTRODUCTION: This study was designed to determine if and how a non-toxic, naturally occurring bioflavonoid, galangin, affects proliferation of human mammary tumor cells. Our previous studies demonstrated that, in other cell types, galangin is a potent inhibitor of the aryl hydrocarbon receptor (AhR), an environmental carcinogen-responsive transcription factor implicated in mammary tumor initiation and growth control. Because some current breast cancer therapeutics are ineffective in estrogen receptor (ER) negative tumors and since the AhR may be involved in breast cancer proliferation, the effects of galangin on the proliferation of an ER(-), AhR(high )line, Hs578T, were studied. METHODS: AhR expression and function in the presence or absence of galangin, a second AhR inhibitor, α-naphthoflavone (α-NF), an AhR agonist, indole-3-carbinol, and a transfected AhR repressor-encoding plasmid (FhAhRR) were studied in Hs578T cells by western blotting for nuclear (for instance, constitutively activated) AhR and by transfection of an AhR-driven reporter construct, pGudLuc. The effects of these agents on cell proliferation were studied by (3)H-thymidine incorporation and by flow cytometry. The effects on cyclins implicated in mammary tumorigenesis were evaluated by western blotting. RESULTS: Hs578T cells were shown to express high levels of constitutively active AhR. Constitutive and environmental chemical-induced AhR activity was profoundly suppressed by galangin as was cell proliferation. However, the failure of α-NF or FhAhRR transfection to block proliferation indicated that galangin-mediated AhR inhibition was either insufficient or unrelated to its ability to significantly block cell proliferation at therapeutically relevant doses (IC(50 )= 11 μM). Galangin inhibited transition of cells from the G(0)/G(1 )to the S phases of cell growth, likely through the nearly total elimination of cyclin D3. Expression of cyclins A and E was also suppressed. CONCLUSION: Galangin is a strong inhibitor of Hs578T cell proliferation that likely mediates this effect through a relatively unique mechanism, suppression of cyclin D3, and not through the AhR. The results suggest that this non-toxic bioflavonoid may be useful as a chemotherapeutic, particularly in combination with agents that target other components of the tumor cell cycle and in situations where estrogen receptor-specific therapeutics are ineffective

    Expression of Aryl Hydrocarbon Receptor in Human Placentas and Fetal Tissues

    No full text
    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, mediates many biological processes, including fetal development. In this study, we examined AhR protein expression in human placentas from normal (N) and severe preeclamptic (sPE) pregnancies, as well as human fetal tissues from the second trimester of pregnancy, using immunohistochemistry and/or Western blot analysis. In the placentas, the AhR immunoreactivity was present primarily in syncytiotrophoblasts. The AhR staining was also seen in endothelium of large blood vessels in villi and endothelium of umbilical cord arteries and veins. No difference in AhR protein levels was found between N and sPE placentas. In fetal tissues, the AhR immunoreactivity was localized in lung, kidney, esophagus, pancreas, liver, testicle, thymus gland, retina, and choroid, mainly in epithelial cells, whereas it was absent in heart, brain, sclera, and thoracic aorta. These findings suggest that the AhR plays a critical role in syncytiotrophoblasts of human placentas and epithelium of many fetal organs. These data also imply that human placentas and those fetal organs with high AhR expression (e.g., lung, kidney, liver, pancreas, and thymus gland) during fetal development are highly susceptible to environmental toxicants such as dioxin. (J Histochem Cytochem 58:679–685, 2010
    corecore